Study on the Antifatigue Effect of Compound Amino Acid Capsules

IF 2.6 2区 生物学 Q3 CELL BIOLOGY Cellular Microbiology Pub Date : 2022-04-27 DOI:10.1155/2022/6593811
Wen-cai Huang, Hua-qiang Hui, Ji-ping Xu, Honglei Guo, Yunfeng Wang, Wei Zhu
{"title":"Study on the Antifatigue Effect of Compound Amino Acid Capsules","authors":"Wen-cai Huang, Hua-qiang Hui, Ji-ping Xu, Honglei Guo, Yunfeng Wang, Wei Zhu","doi":"10.1155/2022/6593811","DOIUrl":null,"url":null,"abstract":"Supplementing amino acids was proven to relieve fatigue caused by exercise. This study explored the antifatigue effects of compound amino acid capsules (CAAC) on rats undergoing the forced swimming test (FST). CAAC augmented the endurance of FST in rats and alleviated the damage of skeletal muscle tissue and reduced the content of biochemical indicators in the serum. Furthermore, CAAC prevented skeletal muscle dysfunction in FST rats by modulating inflammation and oxidation reactions. After the treatment with CAAC, apoptosis and apoptosis-related protein and p-p65 were weakened, while the levels of SIRT1 and SIRT1/PGC-1α/Nrf2 pathway-related proteins were enhanced. The antifatigue properties of CAAC were associated with its antioxidant and anti-inflammatory capabilities, which were realized by activating the SIRT1/PGC-1α/Nrf2 pathway.","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/6593811","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Supplementing amino acids was proven to relieve fatigue caused by exercise. This study explored the antifatigue effects of compound amino acid capsules (CAAC) on rats undergoing the forced swimming test (FST). CAAC augmented the endurance of FST in rats and alleviated the damage of skeletal muscle tissue and reduced the content of biochemical indicators in the serum. Furthermore, CAAC prevented skeletal muscle dysfunction in FST rats by modulating inflammation and oxidation reactions. After the treatment with CAAC, apoptosis and apoptosis-related protein and p-p65 were weakened, while the levels of SIRT1 and SIRT1/PGC-1α/Nrf2 pathway-related proteins were enhanced. The antifatigue properties of CAAC were associated with its antioxidant and anti-inflammatory capabilities, which were realized by activating the SIRT1/PGC-1α/Nrf2 pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复方氨基酸胶囊抗疲劳作用的研究
补充氨基酸被证明可以缓解运动引起的疲劳。本研究探讨了复方氨基酸胶囊(CAAC)对大鼠强迫游泳试验(FST)的抗疲劳作用。CAAC增强了大鼠FST的耐力,减轻了骨骼肌组织的损伤,降低了血清生化指标的含量。此外,CAAC通过调节炎症和氧化反应来预防FST大鼠的骨骼肌功能障碍。CAAC治疗后,细胞凋亡和凋亡相关蛋白和p-p65减弱,SIRT1和SIRT1/PGC-1α/Nrf2通路相关蛋白水平升高。CAAC的抗疲劳特性与其抗氧化和抗炎能力有关,这是通过激活SIRT1/PGC-1α/Nrf2途径实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular Microbiology
Cellular Microbiology 生物-微生物学
CiteScore
9.70
自引率
0.00%
发文量
26
审稿时长
3 months
期刊介绍: Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.
期刊最新文献
Gut Microbiota Dysbiosis: A Neglected Risk Factor for Male and Female Fertility Identification of the Plausible Drug Target via Network/Genome Analysis and Its Molecular Interaction Studies Against Multidrug Resistance Bacterial Pathogens Antibiotic Concentrations Affect the Virulence of Klebsiella quasipneumoniae subsp. similipneumoniae Isolates Alterations in the Gut Microbiota in Chinese Patients With Intrahepatic Cholestasis of Pregnancy Innovative Approaches to Suppressing Pseudomonas aeruginosa Growth and Virulence: Current Status and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1