M. Zuschin, Rafał Nawrot, M. Dengg, I. Gallmetzer, A. Haselmair, Sandra Wurzer, A. Tomašovỳch
{"title":"Scale dependence of drilling predation in the Holocene of the northern Adriatic Sea across benthic habitats and nutrient regimes","authors":"M. Zuschin, Rafał Nawrot, M. Dengg, I. Gallmetzer, A. Haselmair, Sandra Wurzer, A. Tomašovỳch","doi":"10.1017/pab.2022.6","DOIUrl":null,"url":null,"abstract":"Abstract. Predation has strongly shaped past and modern marine ecosystems, but the scale dependency of patterns in drilling predation, the most widely used proxy for predator–prey interactions in the fossil record, is a matter of debate. To assess the effects of spatial and taxonomic scale on temporal trends in the drilling frequencies (DFs), we analyzed Holocene molluscan assemblages of different benthic habitats and nutrient regimes from the northern Adriatic shelf in a sequence-stratigraphic context. Although it has been postulated that low predation pressures facilitated the development of high-biomass epifaunal communities in the eastern, relatively oligotrophic portion of the northern Adriatic shelf, DFs reaching up to 30%–40% in the studied assemblage show that drilling predation levels are comparable to those typical of late Cenozoic ecosystems. DFs tend to increase from the transgressive systems tract (TST) into the highstand systems tract (HST) at the local scale, reflecting an increase in water depth by 20–40 m and a shift from infralittoral to circalittoral habitats over the past 10,000 years. As transgressive deposits are thicker at shallower locations and highstand deposits are thicker at deeper locations, a regional increase in DFs from TST to HST is evident only when these differences are accounted for. The increase in DF toward the HST can be recognized at the level of total assemblages, classes, and few abundant and widespread families, but it disappears at the level of genera and species because of their specific environmental requirements, leading to uneven or patchy distribution in space and time.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"462 - 479"},"PeriodicalIF":2.6000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Predation has strongly shaped past and modern marine ecosystems, but the scale dependency of patterns in drilling predation, the most widely used proxy for predator–prey interactions in the fossil record, is a matter of debate. To assess the effects of spatial and taxonomic scale on temporal trends in the drilling frequencies (DFs), we analyzed Holocene molluscan assemblages of different benthic habitats and nutrient regimes from the northern Adriatic shelf in a sequence-stratigraphic context. Although it has been postulated that low predation pressures facilitated the development of high-biomass epifaunal communities in the eastern, relatively oligotrophic portion of the northern Adriatic shelf, DFs reaching up to 30%–40% in the studied assemblage show that drilling predation levels are comparable to those typical of late Cenozoic ecosystems. DFs tend to increase from the transgressive systems tract (TST) into the highstand systems tract (HST) at the local scale, reflecting an increase in water depth by 20–40 m and a shift from infralittoral to circalittoral habitats over the past 10,000 years. As transgressive deposits are thicker at shallower locations and highstand deposits are thicker at deeper locations, a regional increase in DFs from TST to HST is evident only when these differences are accounted for. The increase in DF toward the HST can be recognized at the level of total assemblages, classes, and few abundant and widespread families, but it disappears at the level of genera and species because of their specific environmental requirements, leading to uneven or patchy distribution in space and time.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.