A framework for association rule learning with social media networks

R. Kruse, Tharindu Lokukatagoda, Suboh Alkhushayni
{"title":"A framework for association rule learning with social media networks","authors":"R. Kruse, Tharindu Lokukatagoda, Suboh Alkhushayni","doi":"10.1088/2633-1357/abe9be","DOIUrl":null,"url":null,"abstract":"We present an application of association rule learning to analyze Twitter account follow patterns. In doing so, we develop a basic framework and tutorial for future researchers to build on, which takes advantage of the Twitter API. To demonstrate the method, we take samples of Twitter accounts following Joe Biden and Donald Trump. For each account in our sample population, we pull the account’s 100 most recently followed accounts. This data is cleaned and formatted for use with Python’s apyori package, which uses the well-known apriori algorithm to learn association rules for a given dataset. This work has two objectives: (1) demonstrate the application association rule learning to social media networks and (2) perform exploratory analysis on the resulting association rules. We successfully demonstrate association rule learning in a Jupyter-notebook environment with Python. The resulting association rules indicate some interesting similarities and differences in the networks of Biden’s and Trump’s Twitter followers. The demonstrated method can be generalized to any non-private Twitter account(s). Extensions of our work can apply the method to larger datasets, with a focus on analyzing the learned association rules. Our study demonstrates an innovative application of association rule learning outside of the traditional use cases, which suggests similar opportunities in fields such as politics, education, public health, and more.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abe9be","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an application of association rule learning to analyze Twitter account follow patterns. In doing so, we develop a basic framework and tutorial for future researchers to build on, which takes advantage of the Twitter API. To demonstrate the method, we take samples of Twitter accounts following Joe Biden and Donald Trump. For each account in our sample population, we pull the account’s 100 most recently followed accounts. This data is cleaned and formatted for use with Python’s apyori package, which uses the well-known apriori algorithm to learn association rules for a given dataset. This work has two objectives: (1) demonstrate the application association rule learning to social media networks and (2) perform exploratory analysis on the resulting association rules. We successfully demonstrate association rule learning in a Jupyter-notebook environment with Python. The resulting association rules indicate some interesting similarities and differences in the networks of Biden’s and Trump’s Twitter followers. The demonstrated method can be generalized to any non-private Twitter account(s). Extensions of our work can apply the method to larger datasets, with a focus on analyzing the learned association rules. Our study demonstrates an innovative application of association rule learning outside of the traditional use cases, which suggests similar opportunities in fields such as politics, education, public health, and more.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社交媒体网络的关联规则学习框架
我们提出了一个应用关联规则学习来分析推特账户关注模式。在这样做的过程中,我们开发了一个基本的框架和教程,供未来的研究人员借鉴,它利用了Twitter API。为了证明这种方法,我们选取了乔·拜登和唐纳德·特朗普之后的推特账户样本。对于样本人群中的每个账户,我们提取该账户最近关注的100个账户。这些数据经过清理和格式化,可与Python的apyori包一起使用,该包使用众所周知的apriori算法来学习给定数据集的关联规则。这项工作有两个目标:(1)演示关联规则学习在社交媒体网络中的应用;(2)对由此产生的关联规则进行探索性分析。我们使用Python在Jupyter笔记本电脑环境中成功地演示了关联规则学习。由此产生的关联规则表明,拜登和特朗普的推特粉丝网络存在一些有趣的相似之处和差异。演示的方法可以推广到任何非私人Twitter帐户。我们工作的扩展可以将该方法应用于更大的数据集,重点是分析学习到的关联规则。我们的研究展示了关联规则学习在传统用例之外的创新应用,这表明在政治、教育、公共卫生等领域也有类似的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Morphology exploration of pollen using deep learning latent space The infection and recovery periods of the 2022 outbreak of monkey-pox virus disease Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed Genome analysis of a plastisphere-associated Oceanimonas sp. NSJ1 sequenced on Nanopore MinION platform Prediction of malignant transformation in oral epithelial dysplasia using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1