Bayesian Nonlinear Tensor Regression with Functional Fused Elastic Net Prior

IF 2.3 3区 工程技术 Q1 STATISTICS & PROBABILITY Technometrics Pub Date : 2023-02-16 DOI:10.1080/00401706.2023.2197471
Shuo Chen, Kejun He, Shiyuan He, Yang Ni, Raymond K. W. Wong
{"title":"Bayesian Nonlinear Tensor Regression with Functional Fused Elastic Net Prior","authors":"Shuo Chen, Kejun He, Shiyuan He, Yang Ni, Raymond K. W. Wong","doi":"10.1080/00401706.2023.2197471","DOIUrl":null,"url":null,"abstract":"Tensor regression methods have been widely used to predict a scalar response from covariates in the form of a multiway array. In many applications, the regions of tensor covariates used for prediction are often spatially connected with unknown shapes and discontinuous jumps on the boundaries. Moreover, the relationship between the response and the tensor covariates can be nonlinear. In this article, we develop a nonlinear Bayesian tensor additive regression model to accommodate such spatial structure. A functional fused elastic net prior is proposed over the additive component functions to comprehensively model the nonlinearity and spatial smoothness, detect the discontinuous jumps, and simultaneously identify the active regions. The great flexibility and interpretability of the proposed method against the alternatives are demonstrated by a simulation study and an analysis on facial feature data.","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00401706.2023.2197471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor regression methods have been widely used to predict a scalar response from covariates in the form of a multiway array. In many applications, the regions of tensor covariates used for prediction are often spatially connected with unknown shapes and discontinuous jumps on the boundaries. Moreover, the relationship between the response and the tensor covariates can be nonlinear. In this article, we develop a nonlinear Bayesian tensor additive regression model to accommodate such spatial structure. A functional fused elastic net prior is proposed over the additive component functions to comprehensively model the nonlinearity and spatial smoothness, detect the discontinuous jumps, and simultaneously identify the active regions. The great flexibility and interpretability of the proposed method against the alternatives are demonstrated by a simulation study and an analysis on facial feature data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有函数融合弹性网先验的贝叶斯非线性张量回归
张量回归方法已被广泛用于预测来自多路阵列形式的协变量的标量响应。在许多应用中,用于预测的张量协变的区域通常在空间上与未知形状和边界上的不连续跳跃相连接。此外,响应和张量协变量之间的关系可以是非线性的。在本文中,我们开发了一个非线性贝叶斯张量加性回归模型来适应这种空间结构。在加性分量函数上提出了一种函数融合弹性网络先验,以综合建模非线性和空间光滑性,检测不连续跳跃,同时识别活跃区域。通过对人脸特征数据的模拟研究和分析,证明了所提出的方法相对于其他方法具有很大的灵活性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technometrics
Technometrics 管理科学-统计学与概率论
CiteScore
4.50
自引率
16.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the  American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.
期刊最新文献
Bayesian sequential design of computer experiments for quantile set inversion Statistical Inference Based on Kernel Distribution Function Estimators Statistical Modeling of Occupant Behavior The Planetary Atom: A Fictional Account of George Adolphus Schott, the Forgotten Physicist Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner, 1st ed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1