{"title":"Permanent Deformation Characteristics of Flexible Pavement Under Palm Oil Freight Truck Loading","authors":"Dian M. Setiawan","doi":"10.30880/ijie.2023.15.02.004","DOIUrl":null,"url":null,"abstract":"Most of previous studies employed dynamic stability test and Hamburg wheel tracking test to investigate permanent deformation characteristics of asphalt concrete (AC) layer. However, the permanent deformation performance only focuses on the surface course and neglected the influence of middle layer and base course. The present study investigates the permanent deformation characteristics of four (4) different configurations of flexible pavement and analyzes the contribution of AC surface and AC base course to the total permanent deformation of AC layer as the response to various truck’s speed, hauling loads, and loading cycles. Finite element modeling was performed to evaluate critical locations below the tire tread of single unit two-axles truck with the greatest magnitude of permanent deformation and to determine the optimum configuration of flexible pavement by considering the linear viscoelastic behavior of two types of AC mixtures. It can be concluded that the largest permanent deformation is measured below the right edge of the outer tire. The contribution of AC surface course on the total permanent deformation due to the increase in truck’s speed is only about 14.81% to 16.39%, while the contribution of AC surface course on the total permanent deformation due to the increase in truck’s hauling loads as well as the increase in the number of passing trucks is only around 14.76% to 16.44%. On the other hand, the contribution of AC base course on the total permanent deformation due to the increase in truck’s speed from is reaching 83.61% to 85.19%, while the contribution of AC base course on the total permanent deformation due to the increase in truck’s hauling loads as well as the increase in the number of passing trucks is achieving 83.56% to 85.24%.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Most of previous studies employed dynamic stability test and Hamburg wheel tracking test to investigate permanent deformation characteristics of asphalt concrete (AC) layer. However, the permanent deformation performance only focuses on the surface course and neglected the influence of middle layer and base course. The present study investigates the permanent deformation characteristics of four (4) different configurations of flexible pavement and analyzes the contribution of AC surface and AC base course to the total permanent deformation of AC layer as the response to various truck’s speed, hauling loads, and loading cycles. Finite element modeling was performed to evaluate critical locations below the tire tread of single unit two-axles truck with the greatest magnitude of permanent deformation and to determine the optimum configuration of flexible pavement by considering the linear viscoelastic behavior of two types of AC mixtures. It can be concluded that the largest permanent deformation is measured below the right edge of the outer tire. The contribution of AC surface course on the total permanent deformation due to the increase in truck’s speed is only about 14.81% to 16.39%, while the contribution of AC surface course on the total permanent deformation due to the increase in truck’s hauling loads as well as the increase in the number of passing trucks is only around 14.76% to 16.44%. On the other hand, the contribution of AC base course on the total permanent deformation due to the increase in truck’s speed from is reaching 83.61% to 85.19%, while the contribution of AC base course on the total permanent deformation due to the increase in truck’s hauling loads as well as the increase in the number of passing trucks is achieving 83.56% to 85.24%.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.