Analysis on electrochemical CO2 reduction by diamond doping technology

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of Electrochemical Energy Conversion and Storage Pub Date : 2022-12-23 DOI:10.1115/1.4056556
Xiangyong Zeng, Yang Zhao, Naichao Chen, Ping He
{"title":"Analysis on electrochemical CO2 reduction by diamond doping technology","authors":"Xiangyong Zeng, Yang Zhao, Naichao Chen, Ping He","doi":"10.1115/1.4056556","DOIUrl":null,"url":null,"abstract":"\n Mitigating the massive emissions of greenhouse gases is one of the main measures taken to resolve the current growing climate problems. The electrochemical reduction of carbon dioxide to economically valuable chemical fuels has attracted the intensive attention of scholars. This review provides an overview of the application of conductive diamond in electrocatalytic reduction and outlines the improvement of electrochemical properties by employing metal particles to modify the surface. Meanwhile, the carbon-based electrode materials represented by glassy carbon and diamond-like carbon also have broad research value. Emphasis is placed on the electrochemical properties of boron-doped, transition metal modification and co-doped diamond film electrodes with appropriate extensions respectively. The carbon-chain compounds produced by the reduction reaction are also briefly described, which mainly focus on formic acid and ethanol. In addition, the development directions of electrochemical reduction technology are prospected.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056556","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitigating the massive emissions of greenhouse gases is one of the main measures taken to resolve the current growing climate problems. The electrochemical reduction of carbon dioxide to economically valuable chemical fuels has attracted the intensive attention of scholars. This review provides an overview of the application of conductive diamond in electrocatalytic reduction and outlines the improvement of electrochemical properties by employing metal particles to modify the surface. Meanwhile, the carbon-based electrode materials represented by glassy carbon and diamond-like carbon also have broad research value. Emphasis is placed on the electrochemical properties of boron-doped, transition metal modification and co-doped diamond film electrodes with appropriate extensions respectively. The carbon-chain compounds produced by the reduction reaction are also briefly described, which mainly focus on formic acid and ethanol. In addition, the development directions of electrochemical reduction technology are prospected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金刚石掺杂技术在电化学CO2还原中的应用分析
减少温室气体的大量排放是解决当前日益严重的气候问题的主要措施之一。电化学将二氧化碳还原为具有经济价值的化学燃料引起了学者们的高度关注。本文综述了导电金刚石在电催化还原中的应用,并概述了利用金属颗粒修饰表面来改善导电金刚石电化学性能的方法。同时,以玻碳和类金刚石碳为代表的碳基电极材料也具有广泛的研究价值。重点介绍了掺硼电极、过渡金属改性电极和适当扩展的共掺金刚石薄膜电极的电化学性能。简要介绍了还原反应生成的碳链化合物,主要是甲酸和乙醇。展望了电化学还原技术的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
期刊最新文献
Internal short circuit and dynamic response of large-format prismatic lithium-ion battery under mechanical abuse Thermal runaway characteristics of Ni-rich lithium-ion batteries employing TPP-based electrolytes Coupled Multiphysics Modeling of Lithium-ion Batteries for Automotive Crashworthiness Applications Mechanical deformation in lithium-ion battery electrodes: modelling and experiment Neural Network-Based Modeling of Diffusion-Induced Stress in a Hollow Cylindrical Nano-Electrode of Lithium-Ion Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1