Enzyme-catalyzed synthesis of 4-methylcatechol oligomer and preliminary evaluations as stabilizing agent in polypropylene

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0008
Yanpeng Wang, Fan Jiang, Lei Zhang
{"title":"Enzyme-catalyzed synthesis of 4-methylcatechol oligomer and preliminary evaluations as stabilizing agent in polypropylene","authors":"Yanpeng Wang, Fan Jiang, Lei Zhang","doi":"10.1515/epoly-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, 4-methylcatechol oligomer has been prepared by using enzyme-catalyzed polymerization in water and preliminary evaluations as stabilizing agent in polypropylene (PP) was performed. In comparison with intrinsic PP, the oxidation onset temperature of the 4-methylcatechol oligomer/PP composite increased by 66°C, and the oxidation induction time increased by 40 min. In addition, the mixing of a 4-methylcatechol oligomer with PP (i.e., in the formation of a 4-methylcatechol oligomer/PP composite) did significantly enhance the long-term stability of PP in a thermal oxidative environment. Moreover, the tensile strength of this composite did not significantly decrease after aging for 800 h in an air atmosphere at 120°C. These results show that the addition of a 4-methylcatechol oligomer will markedly delay the aging and degradation of PP materials, even under extreme conditions. Thus, an enzyme-catalyzed polymerization of phenol compounds may provide a new avenue toward the preparation of novel antioxidants.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0008","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the present work, 4-methylcatechol oligomer has been prepared by using enzyme-catalyzed polymerization in water and preliminary evaluations as stabilizing agent in polypropylene (PP) was performed. In comparison with intrinsic PP, the oxidation onset temperature of the 4-methylcatechol oligomer/PP composite increased by 66°C, and the oxidation induction time increased by 40 min. In addition, the mixing of a 4-methylcatechol oligomer with PP (i.e., in the formation of a 4-methylcatechol oligomer/PP composite) did significantly enhance the long-term stability of PP in a thermal oxidative environment. Moreover, the tensile strength of this composite did not significantly decrease after aging for 800 h in an air atmosphere at 120°C. These results show that the addition of a 4-methylcatechol oligomer will markedly delay the aging and degradation of PP materials, even under extreme conditions. Thus, an enzyme-catalyzed polymerization of phenol compounds may provide a new avenue toward the preparation of novel antioxidants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酶催化4-甲基儿茶酚低聚物的合成及其作为聚丙烯稳定剂的初步评价
摘要采用酶催化水溶液聚合的方法制备了4-甲基邻苯二酚低聚物,并对其作为聚丙烯(PP)稳定剂的性能进行了初步评价。与本征PP相比,4-甲基邻苯二酚低聚物/PP复合材料的氧化起始温度增加了66°C,氧化诱导时间增加了40 min。此外,4-甲基邻苯二酚低聚物与PP的混合(即,在形成4-甲基邻苯二苯酚低聚物/PP复合物中)确实显著增强了PP在热氧化环境中的长期稳定性。此外,该复合材料的拉伸强度在老化800小时后没有显著降低 h。这些结果表明,即使在极端条件下,加入4-甲基邻苯二酚低聚物也会显著延缓PP材料的老化和降解。因此,酚类化合物的酶催化聚合可以为制备新型抗氧化剂提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1