{"title":"Numerical study on structural performance of corrugated steel plate shear wall with different yield points steel","authors":"Gang Li, Xing Wei, Lin Xiao, Linjun Zhou","doi":"10.1002/tal.1996","DOIUrl":null,"url":null,"abstract":"As a new type of lateral load‐resisting system in SPSW systems, corrugated SPSWs (CSPSWs) have been gradually researched and applied. Corrugated plates offer various advantages over flat plates including higher energy dissipation capacity, ductility, out‐of‐plane stiffness, and improved buckling stability. For seismic control and isolation techniques, low yield point (LYP) steels (LY100, LY160, and LY225) are the reliable and ideal energy‐dissipating materials. The low yield point CSPSWs combine high energy‐consuming materials with high‐performance structures to provide a better solution for ductile and seismic resistance of high‐rise and super tall buildings. Currently, there are no design codes addressing the seismic performance of LYP corrugated steel plate shear walls (CSPSWs). This study investigates cyclic behavior and energy dissipation performance of corrugated steel plate yield point (100, 160, 225, 235, and 345 MPa) of different thickness CSPSWs and determine the plate yield point that provides the optimum performance. Results and findings of this study reveal that compared with the ordinary yield strength corrugated steel plates, the low yield point CSPSWs have a larger safety factor of lateral bearing capacity, a fuller hysteresis curve, a strong energy dissipation coefficient, a larger ductility coefficient and a smaller fluctuation range of strength degradation coefficient, and better strength stability. The initial equivalent stiffness of CSPSWs with different yield strengths is the same.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1996","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a new type of lateral load‐resisting system in SPSW systems, corrugated SPSWs (CSPSWs) have been gradually researched and applied. Corrugated plates offer various advantages over flat plates including higher energy dissipation capacity, ductility, out‐of‐plane stiffness, and improved buckling stability. For seismic control and isolation techniques, low yield point (LYP) steels (LY100, LY160, and LY225) are the reliable and ideal energy‐dissipating materials. The low yield point CSPSWs combine high energy‐consuming materials with high‐performance structures to provide a better solution for ductile and seismic resistance of high‐rise and super tall buildings. Currently, there are no design codes addressing the seismic performance of LYP corrugated steel plate shear walls (CSPSWs). This study investigates cyclic behavior and energy dissipation performance of corrugated steel plate yield point (100, 160, 225, 235, and 345 MPa) of different thickness CSPSWs and determine the plate yield point that provides the optimum performance. Results and findings of this study reveal that compared with the ordinary yield strength corrugated steel plates, the low yield point CSPSWs have a larger safety factor of lateral bearing capacity, a fuller hysteresis curve, a strong energy dissipation coefficient, a larger ductility coefficient and a smaller fluctuation range of strength degradation coefficient, and better strength stability. The initial equivalent stiffness of CSPSWs with different yield strengths is the same.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.