Pyro-Hydrometallurgy Routes to Recover Silica from Indonesian Ferronickel Slag

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Recycling Pub Date : 2023-01-13 DOI:10.3390/recycling8010013
R. M. Ulum, Natalin, R. Riastuti, W. Mayangsari, A. Prasetyo, J. Soedarsono, A. Maksum
{"title":"Pyro-Hydrometallurgy Routes to Recover Silica from Indonesian Ferronickel Slag","authors":"R. M. Ulum, Natalin, R. Riastuti, W. Mayangsari, A. Prasetyo, J. Soedarsono, A. Maksum","doi":"10.3390/recycling8010013","DOIUrl":null,"url":null,"abstract":"Ferronickel slag is a by-product of nickel smelting that provides an abundant silica source. Based on data, every ton of nickel production is equal to eight tons of ferronickel slag production, increasing without any recycling process. It is essential to create an end-to-end process for nickel production and its by-products because this would be a problem in the future and is relevant for many industrialized countries. This study describes a strategy to process ferronickel slag to produce silica. A pyrometallurgy–hydrometallurgy process and ferronickel slag were used to increase the silica content. The process was conducted through alkali fusion; the ferronickel slag was mixed with sodium carbonate at a temperature of 1000 °C for an hour and continued via leaching, precipitation, and cleaning processes. The leaching process was conducted with four concentrations (4 M, 6 M, 8 M, and 10 M) of sodium hydroxide and three different leaching durations (2 h, 4 h, and 6 h). Using hydrochloric acid (HCl) at pH 2 and deionized (DI) water cleaning, the precipitation process was adopted to synthesize a silica powder with the lowest agglomeration and enhance its purity. Characterization was carried out using X-ray Diffraction (XRD), Scanning Electron Microscopy–Energy-Dispersive Emission (SEM-EDS), X-ray Fluorescence (XRF), and Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES). This study highlighted silica characteristics that indicate high recovery by 85% through alkali fusion, HCl leaching, precipitation, and deionized water cleaning.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling8010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Ferronickel slag is a by-product of nickel smelting that provides an abundant silica source. Based on data, every ton of nickel production is equal to eight tons of ferronickel slag production, increasing without any recycling process. It is essential to create an end-to-end process for nickel production and its by-products because this would be a problem in the future and is relevant for many industrialized countries. This study describes a strategy to process ferronickel slag to produce silica. A pyrometallurgy–hydrometallurgy process and ferronickel slag were used to increase the silica content. The process was conducted through alkali fusion; the ferronickel slag was mixed with sodium carbonate at a temperature of 1000 °C for an hour and continued via leaching, precipitation, and cleaning processes. The leaching process was conducted with four concentrations (4 M, 6 M, 8 M, and 10 M) of sodium hydroxide and three different leaching durations (2 h, 4 h, and 6 h). Using hydrochloric acid (HCl) at pH 2 and deionized (DI) water cleaning, the precipitation process was adopted to synthesize a silica powder with the lowest agglomeration and enhance its purity. Characterization was carried out using X-ray Diffraction (XRD), Scanning Electron Microscopy–Energy-Dispersive Emission (SEM-EDS), X-ray Fluorescence (XRF), and Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES). This study highlighted silica characteristics that indicate high recovery by 85% through alkali fusion, HCl leaching, precipitation, and deionized water cleaning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从印尼镍铁渣中回收二氧化硅的热湿法工艺研究
镍铁渣是镍冶炼的副产品,提供了丰富的硅源。根据数据,每生产一吨镍相当于生产八吨镍铁渣,在没有任何回收处理的情况下不断增加。必须为镍生产及其副产品建立一个端到端的流程,因为这将是未来的一个问题,与许多工业化国家有关。本研究描述了一种利用镍铁渣生产二氧化硅的方法。采用火法-湿法冶金工艺和镍铁渣提高了硅含量。该工艺采用碱熔法;将镍铁渣与碳酸钠在1000℃的温度下混合1小时,继续进行浸出、沉淀、清洗等工序。采用4种浓度(4 M、6 M、8 M和10 M)的氢氧化钠和3种不同浸出时间(2 h、4 h和6 h)进行浸出过程。采用pH为2的盐酸(HCl)和去离子水(DI)清洗,采用沉淀法合成了团聚率最低的硅粉,提高了硅粉的纯度。采用x射线衍射(XRD)、扫描电子显微镜-能量色散发射(SEM-EDS)、x射线荧光(XRF)和电感耦合等离子体-光学发射光谱(ICP-OES)进行表征。该研究强调了二氧化硅的特性,表明通过碱熔融、HCl浸出、沉淀和去离子水清洗,二氧化硅的回收率高达85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
期刊最新文献
The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan Improvement of Thermal Protection in Recycled Polyolefins through Hybrid Mesoporous Silica–Antioxidant Particles Reforming Construction Waste Management for Circular Economy in Kazakhstan: A Cost–Benefit Analysis of Upgrading Construction and Demolition Waste Recycling Centres Sustainable WPC Production: A Novel Method Using Recycled High-Density Polyethylene and Wood Veneer Understanding the State Agency Policies toward RAP Usage in the United States: State of Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1