{"title":"Improved discrete cuckoo-search algorithm for mixed no-idle permutation flow shop scheduling with consideration of energy consumption","authors":"Lingchong Zhong, Wenfeng Li, Bin Qian, Lijun He","doi":"10.1049/cim2.12025","DOIUrl":null,"url":null,"abstract":"<p>The increasing number and types of industrial tasks require factories to be more flexible in production. An improved discrete cuckoo search algorithm (CSA) is proposed and used to optimise the mixed no-idle permutation flow shop scheduling problem (MNPFSP). This problem considers MNPFSP energy consumption (MNPFSP_EC) an optimisation objective. Firstly, according to the characteristics of the individual update formula in the two stages of the standard CSA, the paper replaces the real number calculation or vector calculation in the original update formula with a discrete operation to keep the update mechanism of each stage unchanged. The change allows the algorithm to directly find a feasible solution in the discrete solution space that significantly improves the global search capability of cuckoo search. Secondly, an adaptive-starting local search based on quasi-entropy (QE) is constructed using swap, insert and 2-OPT operations with an exploitation that is adaptively executed based on QE, and QE is used to represent the diversity of population and control individuals in deciding whether to execute local search, thereby reducing computational complexity. Simulation experiments and comparisons of different instances demonstrate that the proposed algorithm can effectively solve MNPFSP_EC.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"3 4","pages":"345-355"},"PeriodicalIF":2.5000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12025","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
The increasing number and types of industrial tasks require factories to be more flexible in production. An improved discrete cuckoo search algorithm (CSA) is proposed and used to optimise the mixed no-idle permutation flow shop scheduling problem (MNPFSP). This problem considers MNPFSP energy consumption (MNPFSP_EC) an optimisation objective. Firstly, according to the characteristics of the individual update formula in the two stages of the standard CSA, the paper replaces the real number calculation or vector calculation in the original update formula with a discrete operation to keep the update mechanism of each stage unchanged. The change allows the algorithm to directly find a feasible solution in the discrete solution space that significantly improves the global search capability of cuckoo search. Secondly, an adaptive-starting local search based on quasi-entropy (QE) is constructed using swap, insert and 2-OPT operations with an exploitation that is adaptively executed based on QE, and QE is used to represent the diversity of population and control individuals in deciding whether to execute local search, thereby reducing computational complexity. Simulation experiments and comparisons of different instances demonstrate that the proposed algorithm can effectively solve MNPFSP_EC.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).