{"title":"Defluoridation of Groundwater with the Help of Azadirachta indica leaves as Bioadsorbent in Korba, Chhattisgarh, India","authors":"K. Kashyap","doi":"10.21786/bbrc/15.2.9","DOIUrl":null,"url":null,"abstract":"In this paper, we have used a removal technique of fluoride from groundwater in Korba district, Chhattisgarh, using thermally activated neem (Azadirachta indica) leaves as adsorbents. For this purpose, we collected the groundwater sample in January–March 2021. The Ion-Selective Electrode (ISE) technique was used to assess the fluoride concentration in groundwater samples. Neem leaves were efficient at removing fluoride in this study. Fluoride has a split personality in the human system, having a damaging impact when fluoride concentration is more than 1.5 mg/L, causing dental and skeletal fluorosis, and a positive effect when concentration is less than 1.0 mg/L, causing caries preclusion, and health promotion. This small project provides the outcomes of a study on neem leaf powder for water defluoridation. The analysis here discusses the applicability of inexpensive leaf adsorbents for successfully remediating fluoride contaminated water: contact time, pH, and adsorbent concentration all influence fluoride ion sorption effectiveness. The effects of treated leaf powder on pH, adsorbent dose, and contact time with aqueous solutions containing 2.28–10.04 mg/L fluoride ions were investigated. Fluoride adsorption is most substantial at pH 2. Fluoride removal diminishes dramatically when the pH exceeds 2. At adsorbent doses of 10 g/L, the necessary time for fluoride ion adsorption equilibrium is 120 minutes, and the highest removal efficiency attained was 85%, during that amount of adsorbent was 12 g/L. This research also discusses fluoride's adsorption isotherm and kinetics by activated neem leaf powder.","PeriodicalId":9156,"journal":{"name":"Bioscience Biotechnology Research Communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Biotechnology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21786/bbrc/15.2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have used a removal technique of fluoride from groundwater in Korba district, Chhattisgarh, using thermally activated neem (Azadirachta indica) leaves as adsorbents. For this purpose, we collected the groundwater sample in January–March 2021. The Ion-Selective Electrode (ISE) technique was used to assess the fluoride concentration in groundwater samples. Neem leaves were efficient at removing fluoride in this study. Fluoride has a split personality in the human system, having a damaging impact when fluoride concentration is more than 1.5 mg/L, causing dental and skeletal fluorosis, and a positive effect when concentration is less than 1.0 mg/L, causing caries preclusion, and health promotion. This small project provides the outcomes of a study on neem leaf powder for water defluoridation. The analysis here discusses the applicability of inexpensive leaf adsorbents for successfully remediating fluoride contaminated water: contact time, pH, and adsorbent concentration all influence fluoride ion sorption effectiveness. The effects of treated leaf powder on pH, adsorbent dose, and contact time with aqueous solutions containing 2.28–10.04 mg/L fluoride ions were investigated. Fluoride adsorption is most substantial at pH 2. Fluoride removal diminishes dramatically when the pH exceeds 2. At adsorbent doses of 10 g/L, the necessary time for fluoride ion adsorption equilibrium is 120 minutes, and the highest removal efficiency attained was 85%, during that amount of adsorbent was 12 g/L. This research also discusses fluoride's adsorption isotherm and kinetics by activated neem leaf powder.