Mathematical Modeling and Kinetics of Removing Metal Ions from Industrial Wastewater

Nizar A. Jawad, Tariq M. Naife
{"title":"Mathematical Modeling and Kinetics of Removing Metal Ions from Industrial Wastewater","authors":"Nizar A. Jawad, Tariq M. Naife","doi":"10.31699/ijcpe.2022.4.8","DOIUrl":null,"url":null,"abstract":"The study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir model with correlation coefficients (R2) of 0.999. Kinetic models studied showed that a pseudo-second-order model was followed and thermodynamically, the process was exothermic due to ∆H negative, the reduction in randomness because of negative ∆S. additionally, spontaneous adsorption of metal ions was ∆G negative values influenced.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31699/ijcpe.2022.4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir model with correlation coefficients (R2) of 0.999. Kinetic models studied showed that a pseudo-second-order model was followed and thermodynamically, the process was exothermic due to ∆H negative, the reduction in randomness because of negative ∆S. additionally, spontaneous adsorption of metal ions was ∆G negative values influenced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业废水中金属离子去除的数学模型和动力学
本研究的目的是生产纳米氧化石墨烯(GO),然后将其用于分批吸附,以去除工业废水中的重金属(镉Cd+2、镍Ni+2和钒V+5)离子。研究了温度(20-50)°C和初始浓度(100-800)mg L-1对吸附过程的影响。使用模拟离子水溶液来确定吸附等温线,并在收集实验数据后,对吸附过程进行动力学和热力学研究。Langmuir、Freundlich和Temkin等温线模型用于拟合数据。结果表明,GO吸附表面的Cd、Ni和V离子符合Langmuir模型,相关系数(R2)为0.999。所研究的动力学模型表明,遵循伪二阶模型,在热力学上,由于∆H为负,该过程是放热的,而由于∆S为负,随机性降低。此外,金属离子的自发吸附受到∆G负值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Using Environmentally Friendly Materials to Improve the Properties of the Drilling Fluid Caffeine Extraction from Spent Coffee Grounds by Solid-liquid and Ultrasound-assisted Extraction: Kinetic and Thermodynamic Study Optimization of Separator Size and Operating Pressure for Three-phase Separators in the West Qurna1 Oil Field Production Optimization of an Oil Well by Restraining Water Breakthrough Utilizing Hybrid RO-OARO Systems as New Methods for Desalination Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1