Positive algorithmic bias cannot stop fragmentation in homophilic networks

IF 1.3 4区 社会学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Mathematical Sociology Pub Date : 2020-01-09 DOI:10.1080/0022250X.2020.1818078
C. Blex, T. Yasseri
{"title":"Positive algorithmic bias cannot stop fragmentation in homophilic networks","authors":"C. Blex, T. Yasseri","doi":"10.1080/0022250X.2020.1818078","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fragmentation, echo chambers, and their amelioration in social networks have been a growing concern in the academic and non-academic world. This paper shows how, under the assumption of homophily, echo chambers and fragmentation are system-immanent phenomena of highly flexible social networks, even under ideal conditions for heterogeneity. We achieve this by finding an analytical, network-based solution to the Schelling model and by proving that weak ties do not hinder the process. Furthermore, we derive that no level of positive algorithmic bias in the form of rewiring is capable of preventing fragmentation and its effect on reducing the fragmentation speed is negligible.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"46 1","pages":"80 - 97"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250X.2020.1818078","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250X.2020.1818078","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 20

Abstract

ABSTRACT Fragmentation, echo chambers, and their amelioration in social networks have been a growing concern in the academic and non-academic world. This paper shows how, under the assumption of homophily, echo chambers and fragmentation are system-immanent phenomena of highly flexible social networks, even under ideal conditions for heterogeneity. We achieve this by finding an analytical, network-based solution to the Schelling model and by proving that weak ties do not hinder the process. Furthermore, we derive that no level of positive algorithmic bias in the form of rewiring is capable of preventing fragmentation and its effect on reducing the fragmentation speed is negligible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正算法偏差不能阻止同源网络中的碎片化
社交网络的碎片化、回声室及其改善已经成为学术界和非学术界日益关注的问题。本文表明,在同质性假设下,回声室和碎片化是高度灵活的社会网络的系统内在现象,即使在异质性的理想条件下也是如此。我们通过为谢林模型找到一个分析的、基于网络的解决方案,并通过证明弱联系不会阻碍这一过程来实现这一点。此外,我们得出,任何以重新布线形式存在的正算法偏差都无法防止碎片,其对降低碎片速度的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematical Sociology
Journal of Mathematical Sociology 数学-数学跨学科应用
CiteScore
2.90
自引率
10.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered. The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.
期刊最新文献
What Amphibians Can Teach Us About the Evolution of Parental Care. Can altruism lead to a willingness to take risks? Everybody herds, sometimes: cumulative advantage as a product of rational learning Hurdle-QAP models overcome dependency and sparsity in scientific collaboration count networks Latent class analysis of multigroup heterogeneity in propensity for academic dishonesty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1