Influence of Ferula assa-foetida Loaded Chitosan Nanoparticle Biofilm on Wound Healing in Full-Thickness Wounds Infected with Methicillin Resistant Staphylococcus aureus
M. Sadeghi, Shayan Kalantari, F. Gharib, F. Faedmaleki, A. Yousefi
{"title":"Influence of Ferula assa-foetida Loaded Chitosan Nanoparticle Biofilm on Wound Healing in Full-Thickness Wounds Infected with Methicillin Resistant Staphylococcus aureus","authors":"M. Sadeghi, Shayan Kalantari, F. Gharib, F. Faedmaleki, A. Yousefi","doi":"10.22034/IVSA/IVSA.2019.201547.1200","DOIUrl":null,"url":null,"abstract":"Objective- Cutaneous wound healing is an essential physiological process consisting of the collaboration of many cell strains and their products. Initiation of new management for treatment of wound infections caused by multidrug resistant Staphylococcus aureus is required. The aim of the present study was to assess wound healing activity of Ferula assa-foetida loaded chitosan nanoparticle biofilm in methicillin resistant S. aureus (MRSA) infected wounds in rats. Design- Experimental study Animals- Forty eight male healthy Wistar rats. Procedures- The animals were randomized into four groups of 12 animals each. In group I, the wounds were infected with MRSA and only treated with 0.1 mL the sterile saline 0.9% solution. In group II, the infected wounds were dressed with chitosan nanoparticles biofilm. In group III, animals with infected wounds were treated with 0.1 mL topical application of Ferula assa-foetida. In group IV, animals with infected wounds were dressed with Ferula assa-foetida loaded chitosan nanoparticles biofilm. Results- Microbiological examination, planimetric, biomechanical, histological and quantitative morphometric studies and determination of hydroxyproline levels showed that there was significant difference between animals in group IV compared to other groups (p = 0.001). Conclusion and Clinical Relevance- Ferula assa-foetida loaded chitosan nanoparticles biofilm could be useful for treatment of MRSA infected wounds in diabetes.","PeriodicalId":14554,"journal":{"name":"Iranian Journal of Veterinary Surgery","volume":"15 1","pages":"42-52"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Veterinary Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IVSA/IVSA.2019.201547.1200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 1
Abstract
Objective- Cutaneous wound healing is an essential physiological process consisting of the collaboration of many cell strains and their products. Initiation of new management for treatment of wound infections caused by multidrug resistant Staphylococcus aureus is required. The aim of the present study was to assess wound healing activity of Ferula assa-foetida loaded chitosan nanoparticle biofilm in methicillin resistant S. aureus (MRSA) infected wounds in rats. Design- Experimental study Animals- Forty eight male healthy Wistar rats. Procedures- The animals were randomized into four groups of 12 animals each. In group I, the wounds were infected with MRSA and only treated with 0.1 mL the sterile saline 0.9% solution. In group II, the infected wounds were dressed with chitosan nanoparticles biofilm. In group III, animals with infected wounds were treated with 0.1 mL topical application of Ferula assa-foetida. In group IV, animals with infected wounds were dressed with Ferula assa-foetida loaded chitosan nanoparticles biofilm. Results- Microbiological examination, planimetric, biomechanical, histological and quantitative morphometric studies and determination of hydroxyproline levels showed that there was significant difference between animals in group IV compared to other groups (p = 0.001). Conclusion and Clinical Relevance- Ferula assa-foetida loaded chitosan nanoparticles biofilm could be useful for treatment of MRSA infected wounds in diabetes.