Graph-learning guided mechanistic insights into imipenem hydrolysis in GES carbapenemases

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2022-06-16 DOI:10.1088/2516-1075/ac7993
Zilin Song, Peng-Chu Tao
{"title":"Graph-learning guided mechanistic insights into imipenem hydrolysis in GES carbapenemases","authors":"Zilin Song, Peng-Chu Tao","doi":"10.1088/2516-1075/ac7993","DOIUrl":null,"url":null,"abstract":"Pathogen resistance to carbapenem antibiotics compromises effective treatments of superbug infections. One major source of carbapenem resistance is the bacterial production of carbapenemases which effectively hydrolyze carbapenem drugs. In this computational study, the deacylation reaction of imipenem (IPM) by GES-5 carbapenemases (GES) is modeled to unravel the mechanistic factors that facilitate carbapenem resistance. Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations are applied to sample the GES/IPM deacylation barriers on the minimum energy pathways (MEPs). In light of the recent emergence of graph-based deep-learning techniques, we construct graph representations of the GES/IPM active site. An edge-conditioned graph convolutional neural network (ECGCNN) is trained on the acyl-enzyme conformational graphs to learn the underlying correlations between the GES/IPM conformations and the deacylation barriers. A perturbative approach is proposed to interpret the latent representations from the graph-learning (GL) model and extract essential mechanistic understanding with atomistic detail. In general, our study combining QM/MM MEPs calculations and GL models explains mechanistic landscapes underlying the IPM resistance driven by GES carbapenemases. We also demonstrate that GL methods could effectively assist the post-analysis of QM/MM calculations whose data span high dimensionality and large sample-size.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ac7993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Pathogen resistance to carbapenem antibiotics compromises effective treatments of superbug infections. One major source of carbapenem resistance is the bacterial production of carbapenemases which effectively hydrolyze carbapenem drugs. In this computational study, the deacylation reaction of imipenem (IPM) by GES-5 carbapenemases (GES) is modeled to unravel the mechanistic factors that facilitate carbapenem resistance. Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations are applied to sample the GES/IPM deacylation barriers on the minimum energy pathways (MEPs). In light of the recent emergence of graph-based deep-learning techniques, we construct graph representations of the GES/IPM active site. An edge-conditioned graph convolutional neural network (ECGCNN) is trained on the acyl-enzyme conformational graphs to learn the underlying correlations between the GES/IPM conformations and the deacylation barriers. A perturbative approach is proposed to interpret the latent representations from the graph-learning (GL) model and extract essential mechanistic understanding with atomistic detail. In general, our study combining QM/MM MEPs calculations and GL models explains mechanistic landscapes underlying the IPM resistance driven by GES carbapenemases. We also demonstrate that GL methods could effectively assist the post-analysis of QM/MM calculations whose data span high dimensionality and large sample-size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病原体对碳青霉烯类抗生素的耐药性影响了超级细菌感染的有效治疗。碳青霉烯耐药的一个主要来源是细菌产生的碳青霉烯酶,它能有效地水解碳青霉烯类药物。在这项计算研究中,模拟了GES-5碳青霉烯酶(GES)对亚胺培南(IPM)的去酰化反应,以揭示促进碳青霉烯烯耐药的机制因素。应用混合量子力学/分子力学(QM/MM)计算对最小能量途径(MEPs)上的GES/IPM去酰化势垒进行了模拟。鉴于最近出现的基于图的深度学习技术,我们构建了GES/IPM活性位点的图表示。利用边缘条件图卷积神经网络(ECGCNN)对酰基-酶构象图进行训练,学习GES/IPM构象与去酰化势垒之间的潜在相关性。提出了一种微扰方法来解释来自图学习(GL)模型的潜在表征,并提取具有原子细节的基本机制理解。总的来说,我们的研究结合了QM/MM MEPs计算和GL模型,解释了GES碳青霉烯酶驱动的IPM抗性的机制景观。我们还证明了GL方法可以有效地辅助数据跨越高维和大样本量的QM/MM计算的后分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Doping dependence and multichannel mediators of superconductivity: calculations for a cuprate model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1