Human Vital Physiological Parameters Monitoring: A Wireless Body Area Technology Based Internet of Things

Aliyu Ahmed, A. A. Lukman, Agajo James, O. O. Mikail, Buhari U. Umar, Emmanuel Samuel
{"title":"Human Vital Physiological Parameters Monitoring: A Wireless Body Area Technology Based Internet of Things","authors":"Aliyu Ahmed, A. A. Lukman, Agajo James, O. O. Mikail, Buhari U. Umar, Emmanuel Samuel","doi":"10.14710/JTSISKOM.6.3.2018.115-121","DOIUrl":null,"url":null,"abstract":"Human vital physiological parameters (HVPP) monitoring with embedded sensors integration has improved the smart system technology in this era of a ubiquitous platform. Several IoT-based healthcare applications have been proposed for remote health monitoring. Most of the devices developed require one on one contact with doctors before any medical diagnosis is undertaken. Thereby, make it difficult for frequent visitation to the health center. In this paper, embedded heartbeat and temperature sensors for remote monitoring have been developed using Arduino lily as the system controller and processing unit. The Bluetooth low power enables with Android mobile apps is used for remote monitoring and communication of HVPP in a real time. This gives medical personnel and individual customers opportunity of monitoring their vital physiological parameters such as heartbeat rate and body temperature. However, it moderates sudden attack of chronic ailment like hypertension and reduces congestion of patient in the hospitals.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.6.3.2018.115-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Human vital physiological parameters (HVPP) monitoring with embedded sensors integration has improved the smart system technology in this era of a ubiquitous platform. Several IoT-based healthcare applications have been proposed for remote health monitoring. Most of the devices developed require one on one contact with doctors before any medical diagnosis is undertaken. Thereby, make it difficult for frequent visitation to the health center. In this paper, embedded heartbeat and temperature sensors for remote monitoring have been developed using Arduino lily as the system controller and processing unit. The Bluetooth low power enables with Android mobile apps is used for remote monitoring and communication of HVPP in a real time. This gives medical personnel and individual customers opportunity of monitoring their vital physiological parameters such as heartbeat rate and body temperature. However, it moderates sudden attack of chronic ailment like hypertension and reduces congestion of patient in the hospitals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体生命生理参数监测:基于物联网的无线体域技术
在这个无处不在的平台时代,与嵌入式传感器集成的人类生命生理参数(HVPP)监测改进了智能系统技术。已经提出了几种基于物联网的医疗保健应用程序用于远程健康监测。大多数开发的设备在进行任何医学诊断之前都需要与医生进行一对一的联系。因此,很难经常去健康中心。本文以Arduino-lily为系统控制器和处理单元,开发了用于远程监测的嵌入式心跳和温度传感器。安卓移动应用程序的蓝牙低功耗功能用于HVPP的实时远程监控和通信。这使医务人员和个人客户有机会监测他们的重要生理参数,如心率和体温。然而,它可以缓解高血压等慢性疾病的突然发作,并减少患者在医院的拥挤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1