A 2D Numerical Model of Ultrasonic Wave Propagation in Wooden Utility Poles Using Embedded Waveguide Excitation Technique

IF 0.8 4区 工程技术 Q3 FORESTRY Wood and Fiber Science Pub Date : 2020-01-28 DOI:10.22382/wfs-2020-008
Lee Yishi, M. Mahoor, W. Hall
{"title":"A 2D Numerical Model of Ultrasonic Wave Propagation in Wooden Utility Poles Using Embedded Waveguide Excitation Technique","authors":"Lee Yishi, M. Mahoor, W. Hall","doi":"10.22382/wfs-2020-008","DOIUrl":null,"url":null,"abstract":"Embedded waveguide technique is often not considered as a method for introducing ultrasonic wave for nondestructive testing (NDT). Because of the unique surface condition of wooden utility poles, the rough and uneven surface between the medium and the sensor introduces variation and signal attenuation, which impedes the use of a contact-based ultrasonic sensor. Many inspection and utility firms have adopted the use of inserting a small nail into the wooden pole for NDT. The mechanisms of excitation and reception of ultrasonic wave, however, are very different from the traditional contact-based mounting technique. Because very little research has been carried out on this methodology, this study focuses on the understanding of embedded waveguide excitation and reception in the time domain for wooden structure assessment in cylindrical symmetry. The resulted time domain waveform response is analyzed, and the associated findings will help infer important structural condition for NDT assessments. The study consists of numerical and empirical results to validate and understand the waveform characteristics and the associated energy modes that exist (Bodig 1982) in the two-dimensional wave propagation in a boundary medium","PeriodicalId":23620,"journal":{"name":"Wood and Fiber Science","volume":"52 1","pages":"87-101"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood and Fiber Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.22382/wfs-2020-008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 3

Abstract

Embedded waveguide technique is often not considered as a method for introducing ultrasonic wave for nondestructive testing (NDT). Because of the unique surface condition of wooden utility poles, the rough and uneven surface between the medium and the sensor introduces variation and signal attenuation, which impedes the use of a contact-based ultrasonic sensor. Many inspection and utility firms have adopted the use of inserting a small nail into the wooden pole for NDT. The mechanisms of excitation and reception of ultrasonic wave, however, are very different from the traditional contact-based mounting technique. Because very little research has been carried out on this methodology, this study focuses on the understanding of embedded waveguide excitation and reception in the time domain for wooden structure assessment in cylindrical symmetry. The resulted time domain waveform response is analyzed, and the associated findings will help infer important structural condition for NDT assessments. The study consists of numerical and empirical results to validate and understand the waveform characteristics and the associated energy modes that exist (Bodig 1982) in the two-dimensional wave propagation in a boundary medium
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌入式波导激励技术的木杆内超声传播二维数值模型
嵌入式波导技术通常不被认为是引入超声波进行无损检测(NDT)的一种方法。由于木制电线杆的独特表面条件,介质和传感器之间的粗糙和不平整表面会带来变化和信号衰减,这阻碍了基于接触的超声波传感器的使用。许多检验和公用事业公司都采用了在木杆上插入小钉子进行无损检测的方法。然而,超声波的激发和接收机制与传统的基于接触的安装技术有很大不同。由于对这种方法的研究很少,本研究的重点是了解圆柱对称性木结构评估中时域中的嵌入式波导激励和接收。分析所得时域波形响应,相关发现将有助于推断无损检测评估的重要结构条件。该研究由数值和经验结果组成,以验证和理解边界介质中二维波传播中存在的波形特征和相关能量模式(Bodig 1982)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wood and Fiber Science
Wood and Fiber Science 工程技术-材料科学:纺织
CiteScore
7.50
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: W&FS SCIENTIFIC ARTICLES INCLUDE THESE TOPIC AREAS: -Wood and Lignocellulosic Materials- Biomaterials- Timber Structures and Engineering- Biology- Nano-technology- Natural Fiber Composites- Timber Treatment and Harvesting- Botany- Mycology- Adhesives and Bioresins- Business Management and Marketing- Operations Research. SWST members have access to all full-text electronic versions of current and past Wood and Fiber Science issues.
期刊最新文献
IDENTIFICATION AND RECOGNIZATION OF BAMBOO BASED ON CROSS-SECTIONAL IMAGES USING COMPUTER VISION Fiber Quality Prediction Using Nir Spectral Data: Tree-Based Ensemble Learning VS Deep Neural Networks PRESERVATIVE TREATMENT OF TASMANIAN PLANTATION EUCALYPTUS NITENS USING SUPERCRITICAL FLUIDS Use of a Portable Near Infrared Spectrometer for Wood Identification of Four Dalbergia Species from Madagascar THE GLOBAL WOOD SPECIES PRIORITY LIST: A LIVING DATABASE OF TREE SPECIES MOST AT RISK FOR ILLEGAL LOGGING, UNSUSTAINABLE DEFORESTATION, AND HIGH RATES OF TRADE GLOBALLY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1