Development of a 3D Computer Simulation Model Using C++ Methods

Q4 Physics and Astronomy Defect and Diffusion Forum Pub Date : 2023-08-22 DOI:10.4028/p-5iWtnL
V. Pasternak, A. Ruban, V. Shvedun, Julia Veretennikova
{"title":"Development of a 3D Computer Simulation Model Using C++ Methods","authors":"V. Pasternak, A. Ruban, V. Shvedun, Julia Veretennikova","doi":"10.4028/p-5iWtnL","DOIUrl":null,"url":null,"abstract":"The article presents modelling of spherical elements based on the developed computer model. We recorded the main combinations of spherical particles during filling, which are formed in the hopper. It was found that the most likely combination that occurs when modelling spherical elements consists of three balls. It should be noted that in the cross-section of such a combination passing through the center of the balls, an equilateral triangle is formed. And in the cross-section of the structure, which consists of four spherical balls, a rhombus is formed, if you connect the centers of these spherical elements. It is worth noting that from this formed combination of spherical elements, it can be seen that the rhombus forms two smaller equilateral triangles that fix the process of pushing the spherical balls apart. In turn, the process of pushing spherical elements apart made it possible to fix the contact between spherical elements, as well as to state the stable position of each (individual) particle. This paper also presents the main fragments of encoding the source text of a 3D computer model for modelling spherical elements, which made it possible to optimize the model parameters. It was found that from the obtained data on the distribution of coordination numbers for different volume fillings of spherical elements, it follows that the largest filling was 72 %, which corresponds to the state when 112 lobules have an average coordination number of 3,92.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-5iWtnL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents modelling of spherical elements based on the developed computer model. We recorded the main combinations of spherical particles during filling, which are formed in the hopper. It was found that the most likely combination that occurs when modelling spherical elements consists of three balls. It should be noted that in the cross-section of such a combination passing through the center of the balls, an equilateral triangle is formed. And in the cross-section of the structure, which consists of four spherical balls, a rhombus is formed, if you connect the centers of these spherical elements. It is worth noting that from this formed combination of spherical elements, it can be seen that the rhombus forms two smaller equilateral triangles that fix the process of pushing the spherical balls apart. In turn, the process of pushing spherical elements apart made it possible to fix the contact between spherical elements, as well as to state the stable position of each (individual) particle. This paper also presents the main fragments of encoding the source text of a 3D computer model for modelling spherical elements, which made it possible to optimize the model parameters. It was found that from the obtained data on the distribution of coordination numbers for different volume fillings of spherical elements, it follows that the largest filling was 72 %, which corresponds to the state when 112 lobules have an average coordination number of 3,92.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用c++方法开发三维计算机仿真模型
本文在建立的计算机模型的基础上,对球面单元进行了建模。我们记录了灌装过程中球形颗粒的主要组合,它们是在料斗中形成的。结果发现,最可能的组合发生在建模球形元素由三个球组成时。应该注意的是,在这种组合穿过球中心的横截面中,形成了一个等边三角形。在这个结构的横截面上,它由四个球组成,如果你把这些球的中心连接起来,就会形成一个菱形。值得注意的是,从这种形成的球面单元组合中可以看出,菱形形成了两个较小的等边三角形,它们固定了将球面球推开的过程。反过来,将球面单元分开的过程使得球面单元之间的接触固定,以及每个(单个)粒子的稳定位置成为可能。本文还介绍了球单元三维计算机模型源文本编码的主要片段,为优化模型参数提供了可能。从所获得的球面元不同体积填充的配位数分布数据可以看出,最大填充量为72%,对应于112个小叶的平均配位数为3.92时的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Selected Mechanical Properties of Concrete with Regard to the Type of Steel Fibers Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial Rheological Properties and Segregation of Fresh UHPC with Fibers Affected by Initial Temperature of Concrete Mix Mechanical Properties of Luffa Fiber Reinforced Recycled Polymer Composite Advanced Materials and Technologies in Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1