Elimination of moving vehicles effects on modal identification of beam type bridges

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL Smart Structures and Systems Pub Date : 2021-09-01 DOI:10.12989/SSS.2021.28.3.363
Wen-Yu He, Xiucai Ding, W. Ren, Yue-Ling Jing
{"title":"Elimination of moving vehicles effects on modal identification of beam type bridges","authors":"Wen-Yu He, Xiucai Ding, W. Ren, Yue-Ling Jing","doi":"10.12989/SSS.2021.28.3.363","DOIUrl":null,"url":null,"abstract":"The modal parameters identified under operation conditions are normally employed for bridge damage detection. However, the moving vehicles are usually deemed as part of the operation conditions without considering their mass property. Thus, the identified modal parameters belong to the vehicle-bridge system rather than the bridge itself, which would affect the effectiveness of subsequent damage detection. In this paper, the effects of moving vehicles on the identified frequencies and mode shapes under operation conditions are investigated via finite element model. The necessary of considering the moving vehicle effects is demonstrated by comparing the modal parameters variations induced by the moving vehicle and bridge damage. Then the empirical formulas to eliminate the moving vehicle effects considering the vehicle mass, velocity, bridge span and relative position are established by using the orthogonal test and least square method. Finally, examples are conducted to verify of the effectiveness of the proposed empirical formulas.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.3.363","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

The modal parameters identified under operation conditions are normally employed for bridge damage detection. However, the moving vehicles are usually deemed as part of the operation conditions without considering their mass property. Thus, the identified modal parameters belong to the vehicle-bridge system rather than the bridge itself, which would affect the effectiveness of subsequent damage detection. In this paper, the effects of moving vehicles on the identified frequencies and mode shapes under operation conditions are investigated via finite element model. The necessary of considering the moving vehicle effects is demonstrated by comparing the modal parameters variations induced by the moving vehicle and bridge damage. Then the empirical formulas to eliminate the moving vehicle effects considering the vehicle mass, velocity, bridge span and relative position are established by using the orthogonal test and least square method. Finally, examples are conducted to verify of the effectiveness of the proposed empirical formulas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消除移动车辆对梁式桥梁模态识别的影响
桥梁损伤检测通常采用在实际工况下识别出的模态参数。然而,通常将移动车辆视为运行条件的一部分,而不考虑其质量特性。因此,所识别的模态参数属于车-桥系统而非桥梁本身,这将影响后续损伤检测的有效性。本文通过有限元模型研究了运行条件下车辆运动对识别频率和振型的影响。通过比较动车和桥梁损伤引起的模态参数变化,说明考虑动车影响的必要性。然后利用正交试验和最小二乘法建立了考虑车辆质量、速度、桥梁跨度和相对位置等因素消除移动车辆影响的经验公式。最后通过算例验证了所提经验公式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
期刊最新文献
Analysis, optimization and control of an adaptive tuned vibration absorber featuring magnetoactive materials Numerical investigation on cyclic behaviour of superelastic shape memory alloy (SMA) dampers Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data A corrosion threshold-controllable sensing system of Fe-C coated long period fiber gratings for life-cycle mass loss measurement of steel bars with strain and temperature compensation Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1