Multi-sample comparison using spatial signs for infinite dimensional data

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2022-01-01 DOI:10.1214/22-ejs2054
Joydeep Chowdhury, P. Chaudhuri
{"title":"Multi-sample comparison using spatial signs for infinite dimensional data","authors":"Joydeep Chowdhury, P. Chaudhuri","doi":"10.1214/22-ejs2054","DOIUrl":null,"url":null,"abstract":"We consider an analysis of variance type problem, where the sample observations are random elements in an infinite dimensional space. This scenario covers the case, where the observations are random functions. For such a problem, we propose a test based on spatial signs. We develop an asymptotic implementation as well as a bootstrap implementation and a permutation implementation of this test and investigate their size and power properties. We compare the performance of our test with that of several mean based tests of analysis of variance for functional data studied in the literature. Interestingly, our test not only outperforms the mean based tests in several non-Gaussian models with heavy tails or skewed distributions, but in some Gaussian models also. Further, we also compare the performance of our test with the mean based tests in several models involving contaminated probability distributions. Finally, we demonstrate the performance of these tests in three real datasets: a Canadian weather dataset, a spectrometric dataset on chemical analysis of meat samples and a dataset on orthotic measurements on volunteers.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs2054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an analysis of variance type problem, where the sample observations are random elements in an infinite dimensional space. This scenario covers the case, where the observations are random functions. For such a problem, we propose a test based on spatial signs. We develop an asymptotic implementation as well as a bootstrap implementation and a permutation implementation of this test and investigate their size and power properties. We compare the performance of our test with that of several mean based tests of analysis of variance for functional data studied in the literature. Interestingly, our test not only outperforms the mean based tests in several non-Gaussian models with heavy tails or skewed distributions, but in some Gaussian models also. Further, we also compare the performance of our test with the mean based tests in several models involving contaminated probability distributions. Finally, we demonstrate the performance of these tests in three real datasets: a Canadian weather dataset, a spectrometric dataset on chemical analysis of meat samples and a dataset on orthotic measurements on volunteers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用空间符号对无限维数据进行多样本比较
我们考虑方差分析型问题,其中样本观测是无限维空间中的随机元素。该场景涵盖了观测值为随机函数的情况。对于这样一个问题,我们提出了一个基于空间符号的测试。我们开发了该测试的渐近实现、bootstrap实现和置换实现,并研究了它们的大小和幂性质。我们将我们的测试与文献中研究的函数数据的方差分析的几种基于均值的测试的性能进行了比较。有趣的是,我们的测试不仅在几个具有重尾或偏斜分布的非高斯模型中优于基于平均值的测试,而且在一些高斯模型中也优于基于均值的测试。此外,我们还比较了我们的测试与几个涉及污染概率分布的模型中基于均值的测试的性能。最后,我们在三个真实数据集中展示了这些测试的性能:一个是加拿大天气数据集,一个是肉类样本化学分析的光谱数据集,另一个是志愿者的正交测量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1