Experimental study on convective heat transfer of an open-loop borehole heat exchanger

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2023-04-20 DOI:10.1186/s40517-023-00254-6
Xianbiao Bu, Kunqing Jiang, Huashan Li, Feng Ma, Lingbao Wang
{"title":"Experimental study on convective heat transfer of an open-loop borehole heat exchanger","authors":"Xianbiao Bu,&nbsp;Kunqing Jiang,&nbsp;Huashan Li,&nbsp;Feng Ma,&nbsp;Lingbao Wang","doi":"10.1186/s40517-023-00254-6","DOIUrl":null,"url":null,"abstract":"<div><p>Open-loop borehole heat exchanger (OBHE) is a single well geothermal heat exchanger with an open-loop structure that can realize the geothermal energy extraction without mining the geothermal water. In this paper, a sandbox experiment is designed to simulate the convective heat transfer process in the reservoir area of OBHE. The mechanism of convective heat transfer in the reservoir area is studied, and the key factors that affect the convection heat transfer intensity are analyzed. The results show that the convection heat transfer of OBHE in the reservoir area is affected by both the driving effect of fluid flow inside the screen tube and the buoyancy effect. In the forward flow mode, the two effects have the opposite direction. While in the backward mode, the two effects have the same direction. The backward flow mode is more conducive to convective heat transfer. In addition, many factors influencing significantly the convective heat transfer of OBHE include inlet temperature, inlet flow rate, reservoir temperature, fluid flow direction and inner tube diameter.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00254-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00254-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Open-loop borehole heat exchanger (OBHE) is a single well geothermal heat exchanger with an open-loop structure that can realize the geothermal energy extraction without mining the geothermal water. In this paper, a sandbox experiment is designed to simulate the convective heat transfer process in the reservoir area of OBHE. The mechanism of convective heat transfer in the reservoir area is studied, and the key factors that affect the convection heat transfer intensity are analyzed. The results show that the convection heat transfer of OBHE in the reservoir area is affected by both the driving effect of fluid flow inside the screen tube and the buoyancy effect. In the forward flow mode, the two effects have the opposite direction. While in the backward mode, the two effects have the same direction. The backward flow mode is more conducive to convective heat transfer. In addition, many factors influencing significantly the convective heat transfer of OBHE include inlet temperature, inlet flow rate, reservoir temperature, fluid flow direction and inner tube diameter.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开环钻孔换热器对流换热实验研究
开环钻孔换热器(OBHE)是一种采用开环结构的单井地热换热器,可以在不开采地热水的情况下实现地热能的提取。本文设计了一个沙盒实验来模拟OBHE库区的对流换热过程。研究了库区对流换热机理,分析了影响库区对流换热强度的关键因素。结果表明:储区OBHE对流换热受筛管内流体流动驱动效应和浮力效应双重影响;在正向流动模式下,这两种作用方向相反。而在反向模式下,两种效果的方向相同。回流方式更有利于对流换热。此外,对OBHE对流换热有显著影响的因素包括进口温度、进口流量、储层温度、流体流动方向和内径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1