Muhammet Çelik, Mehmet Tevfik Seferoğlu, M. Akpınar, M. Nasery, Ayşegül Güneş Seferoğlu
{"title":"Evaluation of Load-Transfer Efficiency of Steel Mesh Reinforced Contraction Joints in Concrete Pavement: Accelerated Pavement Test and FE Analysis","authors":"Muhammet Çelik, Mehmet Tevfik Seferoğlu, M. Akpınar, M. Nasery, Ayşegül Güneş Seferoğlu","doi":"10.18400/tekderg.643027","DOIUrl":null,"url":null,"abstract":"Transverse contraction joints are by far the most common type of joint in jointed plain concrete pavements. Early loading of contraction joints can create a weakened vertical plane and later grow as a full-depth crack. In this study, load transfer efficiency (LTE) of steel mesh reinforced transverse contraction joints were studied at accelerated pavement tests (APT). 3D finite element (FE) model of jointed plain concrete pavement (JPCP) was developed to study deflections and crack propagation in just under the joint of the concrete pavement. The APT tests were focused on the LTE values before and after the crack initiation under the contraction joint region. Experiments were performed on three slabs in which two of these slabs were prepared without reinforcement and one of them was reinforced with steel mesh. Data generated by APT was used for verification of crack propagation modeling in the finite element analysis. Steel mesh reinforced slab gave the lowest vertical deflections (51μm) and highest LTE (91.56%). The LTE value in the reinforced slab after 25,000 passes was 13.63% higher than the average of unreinforced slabs. The findings suggest that the load transfer efficiency was found to be a complex parameter and should be interpreted together with average displacement values when contraction joints are evaluated at early traffic loadings.","PeriodicalId":49442,"journal":{"name":"Teknik Dergi","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknik Dergi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18400/tekderg.643027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Transverse contraction joints are by far the most common type of joint in jointed plain concrete pavements. Early loading of contraction joints can create a weakened vertical plane and later grow as a full-depth crack. In this study, load transfer efficiency (LTE) of steel mesh reinforced transverse contraction joints were studied at accelerated pavement tests (APT). 3D finite element (FE) model of jointed plain concrete pavement (JPCP) was developed to study deflections and crack propagation in just under the joint of the concrete pavement. The APT tests were focused on the LTE values before and after the crack initiation under the contraction joint region. Experiments were performed on three slabs in which two of these slabs were prepared without reinforcement and one of them was reinforced with steel mesh. Data generated by APT was used for verification of crack propagation modeling in the finite element analysis. Steel mesh reinforced slab gave the lowest vertical deflections (51μm) and highest LTE (91.56%). The LTE value in the reinforced slab after 25,000 passes was 13.63% higher than the average of unreinforced slabs. The findings suggest that the load transfer efficiency was found to be a complex parameter and should be interpreted together with average displacement values when contraction joints are evaluated at early traffic loadings.
期刊介绍:
The scope of Teknik Dergi is naturally confined with the subjects falling in the area of civil engineering. However, the area of civil engineering has recently been significantly enlarged, even the definition of civil engineering has somewhat changed.
Half a century ago, engineering was simply defined as “the art of using and converting the natural resources for the benefit of the mankind”. Today, the same objective is expected to be realised (i) by complying with the desire and expectations of the people concerned and (ii) without wasting the resources and within the sustainability principles. This change has required an interaction between engineering and social and administrative sciences. Some subjects at the borderline between civil engineering and social and administrative sciences have consequently been included in the area of civil engineering.
Teknik Dergi defines its scope in line with this understanding. However, it requires the papers falling in the borderline to have a significant component of civil engineering.