Alireza Najafi Amel, S. Kouravand, P. Zarafshan, A. Kermani, M. Khashehchi
{"title":"Study the Heat Recovery Performance of Micro and Nano Metfoam Regenerators in Alpha Type Stirling Engine Conditions","authors":"Alireza Najafi Amel, S. Kouravand, P. Zarafshan, A. Kermani, M. Khashehchi","doi":"10.1080/15567265.2018.1456581","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper experimentally investigates the performance of micro and nano metfoam regenerators in alpha-type Stirling engine conditions. The thermal efficiency of this engine depends on performance of regenerator. Therefore, increase the heat recovery of regenerator raises the total efficiency. Accordingly, two types of regenerators from porous media are designed and simulated with different materials. Three-dimensional regenerator CFD simulation shows that randomize porous open cell metfoam made of silver as high conductivity and high heat capacity material is the best structure to fabricate metfoam regenerator. The porosity and matrix element diameter are optimized. The nano coating methodology enhances the activated surface. The regenerators are fabricated using casting polymer mold layer deposition. The nano silver particles are coated on the metfoam by sol-gel coating method. Experimental results show the improvement in regenerator percentage of heat recovery by 3.40% and 5.93% for micro metfoam and nano metfoam, respectively. The maximum improvement is achieved up to 8.65% in case of using the nano metfoam regenerator at 543 K.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"22 1","pages":"137 - 151"},"PeriodicalIF":2.7000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1456581","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1456581","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 11
Abstract
ABSTRACT This paper experimentally investigates the performance of micro and nano metfoam regenerators in alpha-type Stirling engine conditions. The thermal efficiency of this engine depends on performance of regenerator. Therefore, increase the heat recovery of regenerator raises the total efficiency. Accordingly, two types of regenerators from porous media are designed and simulated with different materials. Three-dimensional regenerator CFD simulation shows that randomize porous open cell metfoam made of silver as high conductivity and high heat capacity material is the best structure to fabricate metfoam regenerator. The porosity and matrix element diameter are optimized. The nano coating methodology enhances the activated surface. The regenerators are fabricated using casting polymer mold layer deposition. The nano silver particles are coated on the metfoam by sol-gel coating method. Experimental results show the improvement in regenerator percentage of heat recovery by 3.40% and 5.93% for micro metfoam and nano metfoam, respectively. The maximum improvement is achieved up to 8.65% in case of using the nano metfoam regenerator at 543 K.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.