{"title":"Community Detection Method Based on Two-layer Dissimilarity of Central Node","authors":"Yuexia Zhang, Ziyang Chen","doi":"10.13052/1550-4646.15124","DOIUrl":null,"url":null,"abstract":"Studying community discovery algorithms for complex networks is necessary to determine the origin of opinions, analyze the mechanisms of public opinion transmission, and control the evolution of public opinion. The problem of the existing clustering algorithm of the central node having a low quality of community detection must also be solved. This study proposes a community detection method based on the two-layer dissimilarity of the central node (TDCN-CD). First, the algorithm selects the central node through the degree and distance of the node. Selecting nodes in the same community as the central node at the same time is avoided. Simultaneously, the algorithm proposes the dissimilarity index of nodes based on two layers, which can deeply explore the heterogeneity of nodes and achieve the effect of accurate community division. The results of using Karate and Dolphins datasets for simulation show that compared to the Girvan–Newman and Fast–Newman classical community partitioning algorithms, the TDCN-CD algorithm can effectively detect the community structure and more accurately divide the community. \n ","PeriodicalId":38898,"journal":{"name":"Journal of Mobile Multimedia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/1550-4646.15124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Studying community discovery algorithms for complex networks is necessary to determine the origin of opinions, analyze the mechanisms of public opinion transmission, and control the evolution of public opinion. The problem of the existing clustering algorithm of the central node having a low quality of community detection must also be solved. This study proposes a community detection method based on the two-layer dissimilarity of the central node (TDCN-CD). First, the algorithm selects the central node through the degree and distance of the node. Selecting nodes in the same community as the central node at the same time is avoided. Simultaneously, the algorithm proposes the dissimilarity index of nodes based on two layers, which can deeply explore the heterogeneity of nodes and achieve the effect of accurate community division. The results of using Karate and Dolphins datasets for simulation show that compared to the Girvan–Newman and Fast–Newman classical community partitioning algorithms, the TDCN-CD algorithm can effectively detect the community structure and more accurately divide the community.
期刊介绍:
The scope of the journal will be to address innovation and entrepreneurship aspects in the ICT sector. Edge technologies and advances in ICT that can result in disruptive concepts of major impact will be the major focus of the journal issues. Furthermore, novel processes for continuous innovation that can maintain a disruptive concept at the top level in the highly competitive ICT environment will be published. New practices for lean startup innovation, pivoting methods, evaluation and assessment of concepts will be published. The aim of the journal is to focus on the scientific part of the ICT innovation and highlight the research excellence that can differentiate a startup initiative from the competition.