{"title":"Simultaneous estimation of biomass models for 13 tree species: effects of compatible additivity requirements","authors":"T. Nord‐Larsen, H. Meilby, J. P. Skovsgaard","doi":"10.1139/CJFR-2016-0430","DOIUrl":null,"url":null,"abstract":"A desirable feature of biomass models distinguishing different tree components is compatible additivity of the component functions. Due to forcing of parameter estimates, such additivity is achieved at an expense of precision of the component functions. This study aimed to analyse the loss of precision incurred by forcing of parameters in tree biomass models due to (i) additivity constraints, (ii) combining global and species-specific parameters, and (iii) estimating component functions simultaneously as a system instead of as individual equations. Based on biomass data from 697 trees including 13 different species, we estimated a set of compatibly additive, nonlinear biomass models using simultaneous estimation and compared these with less restricted model systems. In line with other similar studies, the overall model system explained 88%–99% of the variation in individual biomass components. Compared with the unrestricted model, restricting parameters to obtain compatible additivity resulted in a change...","PeriodicalId":9483,"journal":{"name":"Canadian Journal of Forest Research","volume":"47 1","pages":"765-776"},"PeriodicalIF":1.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/CJFR-2016-0430","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/CJFR-2016-0430","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 12
Abstract
A desirable feature of biomass models distinguishing different tree components is compatible additivity of the component functions. Due to forcing of parameter estimates, such additivity is achieved at an expense of precision of the component functions. This study aimed to analyse the loss of precision incurred by forcing of parameters in tree biomass models due to (i) additivity constraints, (ii) combining global and species-specific parameters, and (iii) estimating component functions simultaneously as a system instead of as individual equations. Based on biomass data from 697 trees including 13 different species, we estimated a set of compatibly additive, nonlinear biomass models using simultaneous estimation and compared these with less restricted model systems. In line with other similar studies, the overall model system explained 88%–99% of the variation in individual biomass components. Compared with the unrestricted model, restricting parameters to obtain compatible additivity resulted in a change...
期刊介绍:
Published since 1971, the Canadian Journal of Forest Research is a monthly journal that features articles, reviews, notes and concept papers on a broad spectrum of forest sciences, including biometrics, conservation, disturbances, ecology, economics, entomology, genetics, hydrology, management, nutrient cycling, pathology, physiology, remote sensing, silviculture, social sciences, soils, stand dynamics, and wood science, all in relation to the understanding or management of ecosystem services. It also publishes special issues dedicated to a topic of current interest.