A. Darwich, Abeer Aljareh, Omar Aladel, S. Szávai, H. Nazha
{"title":"Biomechanical Assessment of the Influence of Inlay/Onlay Design and Material on Stress Distribution in Nonvital Molars","authors":"A. Darwich, Abeer Aljareh, Omar Aladel, S. Szávai, H. Nazha","doi":"10.1055/s-0041-1736463","DOIUrl":null,"url":null,"abstract":"\n Objectives The aim of this study was to evaluate the influence of inlays/onlays with or without pulp extension from different materials on stress distribution in endodontically treated molars by three-dimensional finite element analysis (3D FEA).\n Materials and Methods We used 3D mandibular molar models in this study. The models represented mesio-occluso-distal (MOD) cavities restored by inlays, onlays that covered buccal cusps, and onlays that covered all cusps with pulp extension (modified inlay/onlay) or without pulp extension (conventional inlay/onlay). Three materials (L: lithium disilicate glass-ceramic, P: polymer-infiltrated ceramic network [PICN], and C: nanofilled composite resin) were utilized. A force of 600 N was applied vertically and obliquely. Stress distribution in FEA models was analyzed using the von Mises theory.\n Results The results revealed that an oblique load generated higher stresses than vertical load. Composite resin restorations transmitted almost all the stress to the neighboring tooth structures, while lithium disilicate ceramic restorations absorbed most of the stresses. Moreover, modified inlays and onlays with pulp extension proved better than conventional inlays/onlays in terms of stress redistribution in dental structures. Onlays showed a better pattern of stress distribution than inlays within the restoration and the restored tooth.\n Conclusions According to stress distribution in dental structures, modified lithium disilicate ceramic onlays with pulp extension have been found to be the best choice to restore endodontically treated molars among the studied restorations.","PeriodicalId":37771,"journal":{"name":"European Journal of General Dentistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of General Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1736463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 2
Abstract
Objectives The aim of this study was to evaluate the influence of inlays/onlays with or without pulp extension from different materials on stress distribution in endodontically treated molars by three-dimensional finite element analysis (3D FEA).
Materials and Methods We used 3D mandibular molar models in this study. The models represented mesio-occluso-distal (MOD) cavities restored by inlays, onlays that covered buccal cusps, and onlays that covered all cusps with pulp extension (modified inlay/onlay) or without pulp extension (conventional inlay/onlay). Three materials (L: lithium disilicate glass-ceramic, P: polymer-infiltrated ceramic network [PICN], and C: nanofilled composite resin) were utilized. A force of 600 N was applied vertically and obliquely. Stress distribution in FEA models was analyzed using the von Mises theory.
Results The results revealed that an oblique load generated higher stresses than vertical load. Composite resin restorations transmitted almost all the stress to the neighboring tooth structures, while lithium disilicate ceramic restorations absorbed most of the stresses. Moreover, modified inlays and onlays with pulp extension proved better than conventional inlays/onlays in terms of stress redistribution in dental structures. Onlays showed a better pattern of stress distribution than inlays within the restoration and the restored tooth.
Conclusions According to stress distribution in dental structures, modified lithium disilicate ceramic onlays with pulp extension have been found to be the best choice to restore endodontically treated molars among the studied restorations.
期刊介绍:
European Journal of General Dentistry (EJGD) is one of the leading open-access international dental journal within the field of Dentistry. The aim of EJGD is publishing novel and high-quality research papers, as well as to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis. EJGD publishes articles on all disciplines of dentistry including the cariology, orthodontics, oral surgery, preventive dentistry, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.Moreover, EJGD also publish the scientific researches evaluating the use of new biomaterials, new drugs and new methods for treatment of patients with different kinds of oral and maxillofacial diseases or defects, the diagnosis of oral and maxillofacial diseases with new methods, etc. Moreover, researches on the quality of life, psychological interventions, improving disease treatment outcomes, the prevention, diagnosis and management of cancer therapeutic complications, rehabilitation, palliative and end of life care, and support teamwork for cancer care and oral health care for old patients are also welcome. EJGD publishes research articles, case reports, reviews and comparison studies evaluating materials and methods in the all fields of related to dentistry.