Culturing and Mating of Aspergillus fumigatus

George D. Ashton, Paul S. Dyer
{"title":"Culturing and Mating of Aspergillus fumigatus","authors":"George D. Ashton,&nbsp;Paul S. Dyer","doi":"10.1002/cpmc.87","DOIUrl":null,"url":null,"abstract":"<p><i>Aspergillus fumigatus</i> is an opportunistic human fungal pathogen, capable of causing invasive aspergillosis in patients with compromised immune systems. The fungus was long considered a purely asexual organism. However, a sexual cycle was reported in 2009, with methods described to induce mating under laboratory conditions. The presence of a sexual cycle now offers a valuable tool for classical genetic analysis of the fungus, such as allowing determination of whether traits of interest are mono- or poly-genic in nature. For example, the sexual cycle is currently being exploited to determine the genetic basis of traits of medical importance such as resistance to azole antifungals and virulence, and to characterize the genes involved. The sexual cycle can also be used to assess the possibility of gene flow between isolates. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</p><p>This unit describes protocols for culturing of <i>A. fumigatus</i> and for inducing sexual reproduction between compatible <i>MAT1-1</i> and <i>MAT1-2</i> isolates of the species. The unit also provides working methods for harvesting sexual structures, isolating single-spore progeny and confirming whether sexual recombination has occurred. © The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</p>","PeriodicalId":39967,"journal":{"name":"Current Protocols in Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmc.87","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmc.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Aspergillus fumigatus is an opportunistic human fungal pathogen, capable of causing invasive aspergillosis in patients with compromised immune systems. The fungus was long considered a purely asexual organism. However, a sexual cycle was reported in 2009, with methods described to induce mating under laboratory conditions. The presence of a sexual cycle now offers a valuable tool for classical genetic analysis of the fungus, such as allowing determination of whether traits of interest are mono- or poly-genic in nature. For example, the sexual cycle is currently being exploited to determine the genetic basis of traits of medical importance such as resistance to azole antifungals and virulence, and to characterize the genes involved. The sexual cycle can also be used to assess the possibility of gene flow between isolates. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

This unit describes protocols for culturing of A. fumigatus and for inducing sexual reproduction between compatible MAT1-1 and MAT1-2 isolates of the species. The unit also provides working methods for harvesting sexual structures, isolating single-spore progeny and confirming whether sexual recombination has occurred. © The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烟曲霉的培养与交配
烟曲霉是一种机会性的人类真菌病原体,能够在免疫系统受损的患者中引起侵袭性曲霉病。这种真菌长期以来被认为是一种纯粹的无性生物。然而,2009年报道了一种性循环,并描述了在实验室条件下诱导交配的方法。性周期的存在现在为真菌的经典遗传分析提供了一个有价值的工具,例如允许确定感兴趣的性状在自然界中是单基因还是多基因。例如,目前正在利用性周期来确定具有医学重要性的性状的遗传基础,如对唑类抗真菌药物和毒性的抗性,并确定有关基因的特征。性周期也可以用来评估分离株之间基因流动的可能性。这是一篇基于知识共享署名许可协议的开放获取文章,该协议允许在任何媒体上使用、分发和复制,前提是正确引用原始作品。本单元描述了烟曲霉的培养方案,以及在该物种相容的MAT1-1和MAT1-2分离株之间诱导有性繁殖的方案。该单位还提供了收集性结构、分离单孢子后代和确认是否发生有性重组的工作方法。©作者。这是一篇基于知识共享署名许可协议的开放获取文章,该协议允许在任何媒体上使用、分发和复制,前提是正确引用原始作品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Microbiology
Current Protocols in Microbiology Immunology and Microbiology-Parasitology
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Microbiology provides detailed, step-by-step instructions for analyzing bacteria, animal and plant viruses, fungi, protozoans and other microbes. It offers updated coverage of emerging technologies and concepts, such as biofilms, quorum sensing and quantitative PCR, as well as proteomic and genomic methods. It is the first comprehensive source of high-quality microbiology protocols that reflects and incorporates the new mandates and capabilities of this robust and rapidly evolving discipline.
期刊最新文献
Issue Information Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi Gene Editing in Dimorphic Fungi Using CRISPR/Cas9 Vibrio parahaemolyticus: Basic Techniques for Growth, Genetic Manipulation, and Analysis of Virulence Factors 3D Oral and Cervical Tissue Models for Studying Papillomavirus Host-Pathogen Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1