The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2022-08-17 DOI:10.1155/2022/8100523
Muhammad Abubakar Siddique, A. Kashif
{"title":"The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration","authors":"Muhammad Abubakar Siddique, A. Kashif","doi":"10.1155/2022/8100523","DOIUrl":null,"url":null,"abstract":"<jats:p>We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> (where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>…</mo>\n <mn>4</mn>\n </math>\n </jats:inline-formula>) at the vertices of the rhombus <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>−</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, and a fifth mass <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0,0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula>. After writing equations of motion, we express <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula> in terms of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. Finally, we find the bounds on <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>b</mi>\n </math>\n </jats:inline-formula> for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>C</mi>\n </math>\n </jats:inline-formula> increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/8100523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries m i (where i = 1 , 4 ) at the vertices of the rhombus a , 0 , a , 0 , 0 , b , and 0 , b , respectively, and a fifth mass m 0 is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin 0,0 ). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, m 1 = m 2 = m and m 3 = m 4 = m ˜ . After writing equations of motion, we express m 0 , m , and m ˜ in terms of mass parameters a and b . Finally, we find the bounds on a and b for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body m 5 ) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters a and b . The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant C increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有稳定平衡点和菱形位的受限六体问题
我们研究了牛顿引力中菱形约束六体问题的中心构型,它有四个初选(其中i=1…4)在菱形a的顶点处,0,−a,0,0,b,和0,−b,并且第五质量m0在菱形的对角线的交点处,其被放置在坐标系的中心(即原点0,0)。假设菱形的相对顶点处的原色相等,m 1=m2=m和m 3=m 4=m ~。在写出运动方程后,以及根据质量参数a和b的m~。最后,我们找到了正质量在a和b上的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1