About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS Archives of Acoustics Pub Date : 2023-07-20 DOI:10.24425/aoa.2022.142009
A. Perelomova
{"title":"About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam","authors":"A. Perelomova","doi":"10.24425/aoa.2022.142009","DOIUrl":null,"url":null,"abstract":"The dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma. It is shown that the divergence of a beam and its thermal self-action is unusual in some particular cases of parallel propagation ( θ = 0 ) and has no analogues in the dynamics of the Newtonian beams. The nonlinear attenuation of Newtonian beams leads to their defocusing in gases, whereas the unusual cases correspond to the focusing in a presence of magnetic field. The examples of numerical calculations of thermal self-action of magnetoacoustic beams with shock fronts are considered in the usual and unusual cases of diffraction concerning stationary and non-stationary self-action. It is discovered that the diffraction is more ( θ = 0 ) or less ( θ = π / 2 ) manifested as compared to that of the Newtonian beams. The beams which propagate oblique to the magnetic field do not reveal diffraction. The special case, when the sound and Alfvénic speeds are equal, is discussed. This magnetosonic beams incorporate acoustic and Alfvénic properties and do not undergo diffraction in this particular case.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma. It is shown that the divergence of a beam and its thermal self-action is unusual in some particular cases of parallel propagation ( θ = 0 ) and has no analogues in the dynamics of the Newtonian beams. The nonlinear attenuation of Newtonian beams leads to their defocusing in gases, whereas the unusual cases correspond to the focusing in a presence of magnetic field. The examples of numerical calculations of thermal self-action of magnetoacoustic beams with shock fronts are considered in the usual and unusual cases of diffraction concerning stationary and non-stationary self-action. It is discovered that the diffraction is more ( θ = 0 ) or less ( θ = π / 2 ) manifested as compared to that of the Newtonian beams. The beams which propagate oblique to the magnetic field do not reveal diffraction. The special case, when the sound and Alfvénic speeds are equal, is discussed. This magnetosonic beams incorporate acoustic and Alfvénic properties and do not undergo diffraction in this particular case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于磁声波束的反常衍射和热自作用
考虑了方向与平衡直磁强度成恒定角度θ的微发散二维光束的动力学问题。推导了确定梁中流体动力学扰动的近似色散关系和相应的联系。该研究致力于磁电子束的衍射和热传导气体等离子体中束的非线性热自作用。研究表明,在某些特定的平行传播情况下(θ=0),光束的发散及其热自作用是不寻常的,在牛顿光束的动力学中没有类似的情况。牛顿光束的非线性衰减导致它们在气体中散焦,而不寻常的情况对应于磁场存在时的聚焦。在涉及平稳和非平稳自作用的通常和不寻常的衍射情况下,考虑了具有冲击前沿的磁声束热自作用的数值计算示例。研究发现,与牛顿光束相比,衍射更多(θ=0)或更少(θ=π/2)。向磁场倾斜传播的光束不会显示出衍射。讨论了声速和阿尔夫尼克速度相等的特殊情况。这种磁声波束结合了声学和Alfvénic特性,在这种特殊情况下不会发生衍射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
期刊最新文献
148765 148764 Laboratory Tests and Numerical Simulations of Two Anti-Vibration Structures Made by 3D Printing – Comparative Research Evaluation of the Sedimentation Process in the Thickener by Using the Parameters of Longitudinal Ultrasonic Oscillations and Lamb Waves Janusz Wójcik Professor of the IPPT PAN (In Memoriam)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1