Building employability capabilities in data science students: An interdisciplinary, industry‐focused approach

IF 0.8 Q2 EDUCATION & EDUCATIONAL RESEARCH Teaching Statistics Pub Date : 2021-06-25 DOI:10.1111/test.12272
Sonia Ferns, A. Phatak, S. Benson, Nina Kumagai
{"title":"Building employability capabilities in data science students: An interdisciplinary, industry‐focused approach","authors":"Sonia Ferns, A. Phatak, S. Benson, Nina Kumagai","doi":"10.1111/test.12272","DOIUrl":null,"url":null,"abstract":"In the contemporary workplace, data scientists who are capable of interdisciplinary collaboration are in high demand. Universities need to provide data science students with a plethora of learning opportunities that involve collaboration in interdisciplinary contexts and engagement with industry partners. Curtin University and Lab Tests Online Australasia (LTOAU) collaborated to provide an interdisciplinary, industry‐focused learning experience for data science students. Upon completing the project, students reported improved understanding of the range of applications for data science skills. The experience delivered opportunities for greater self‐awareness and highlighted the importance of teamwork, decision‐making and leadership skills. This chapter presents Interdisciplinary Project‐based Work‐Integrated Learning (IPjWIL), an educational approach that equips data science students with the necessary skills to navigate the future world of work. The results of the pilot project described demonstrate how interdisciplinary, industry‐focused learning experiences enhance the capabilities of data science students, thereby augmenting employability.","PeriodicalId":43739,"journal":{"name":"Teaching Statistics","volume":"43 1","pages":"S216 - S225"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/test.12272","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

Abstract

In the contemporary workplace, data scientists who are capable of interdisciplinary collaboration are in high demand. Universities need to provide data science students with a plethora of learning opportunities that involve collaboration in interdisciplinary contexts and engagement with industry partners. Curtin University and Lab Tests Online Australasia (LTOAU) collaborated to provide an interdisciplinary, industry‐focused learning experience for data science students. Upon completing the project, students reported improved understanding of the range of applications for data science skills. The experience delivered opportunities for greater self‐awareness and highlighted the importance of teamwork, decision‐making and leadership skills. This chapter presents Interdisciplinary Project‐based Work‐Integrated Learning (IPjWIL), an educational approach that equips data science students with the necessary skills to navigate the future world of work. The results of the pilot project described demonstrate how interdisciplinary, industry‐focused learning experiences enhance the capabilities of data science students, thereby augmenting employability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
培养数据科学学生的就业能力:一种跨学科、以行业为重点的方法
在当代工作场所,对能够进行跨学科合作的数据科学家的需求很高。大学需要为数据科学专业的学生提供大量的学习机会,包括跨学科背景下的合作以及与行业合作伙伴的合作。科廷大学和澳大利亚在线实验室测试(LTOAU)合作,为数据科学专业的学生提供跨学科的、以行业为重点的学习体验。在完成项目后,学生们报告说,他们对数据科学技能的应用范围有了更好的理解。这段经历为学生提供了提高自我意识的机会,并强调了团队合作、决策和领导技能的重要性。本章介绍了基于跨学科项目的工作集成学习(IPjWIL),这是一种教育方法,为数据科学专业的学生提供必要的技能,以驾驭未来的工作世界。试点项目的结果表明,跨学科的、以行业为重点的学习经验如何提高数据科学专业学生的能力,从而提高就业能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Teaching Statistics
Teaching Statistics EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.10
自引率
25.00%
发文量
31
期刊最新文献
The sample is not the population In praise of pioneers Fear of the unknown: Relationship between statistics anxiety and attitudes toward statistics of university students in three countries Tribute to Jim Ridgway and his contributions to statistics education and statistical literacy Introduction to the Bayes factor: A Shiny/R app
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1