New approach for selecting multi-point relays in the optimized link state routing protocol using self-organizing map artificial neural network: OLSR-SOM
{"title":"New approach for selecting multi-point relays in the optimized link state routing protocol using self-organizing map artificial neural network: OLSR-SOM","authors":"Omar Barki, Z. Guennoun, A. Addaim","doi":"10.11591/ijai.v12.i2.pp648-655","DOIUrl":null,"url":null,"abstract":"In order to improve the selection of multi-point relays (MPRs) by a node node performing the computation (NPC) in the optimized link state routing (OLSR) protocol and therefore to guarantee more security for the routing in the mobile ad hoc network (MANET), we propose new approach that could distinguish between the strong and weak MPRs in the list of MPRs already selected using the standard algorithm described in RFC3626 document. This approach is based on self organizing map (SOM) artificial neural network that processes the collected data and then only selects the strong MPRs using a set of criteria allowing a reliable retransmission and a strong link and therefore better network performances. The obtained results, from the simulations that have been carried out using a customized network simulator 3 (NS3) network simulator, show an improvement in terms of throughput, packets delivery ratio (PDR) and the security of the network compared to the standard approach.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp648-655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
In order to improve the selection of multi-point relays (MPRs) by a node node performing the computation (NPC) in the optimized link state routing (OLSR) protocol and therefore to guarantee more security for the routing in the mobile ad hoc network (MANET), we propose new approach that could distinguish between the strong and weak MPRs in the list of MPRs already selected using the standard algorithm described in RFC3626 document. This approach is based on self organizing map (SOM) artificial neural network that processes the collected data and then only selects the strong MPRs using a set of criteria allowing a reliable retransmission and a strong link and therefore better network performances. The obtained results, from the simulations that have been carried out using a customized network simulator 3 (NS3) network simulator, show an improvement in terms of throughput, packets delivery ratio (PDR) and the security of the network compared to the standard approach.