{"title":"Matrix Reordering for Noisy Disordered Matrices: Optimality and Computationally Efficient Algorithms","authors":"T. Tony Cai;Rong Ma","doi":"10.1109/TIT.2023.3305538","DOIUrl":null,"url":null,"abstract":"Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrix reordering based on a noisy disordered monotone Toeplitz matrix model. We establish the fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares estimator achieves the optimal rate. However, due to its computational complexity, we analyze a popular polynomial-time algorithm, spectral seriation, and show that it is suboptimal. To address this, we propose a novel polynomial-time adaptive sorting algorithm with guaranteed performance improvement. Simulations and analyses of two real single-cell RNA sequencing datasets demonstrate the superiority of our algorithm over existing methods.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 1","pages":"509-531"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10218336/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrix reordering based on a noisy disordered monotone Toeplitz matrix model. We establish the fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares estimator achieves the optimal rate. However, due to its computational complexity, we analyze a popular polynomial-time algorithm, spectral seriation, and show that it is suboptimal. To address this, we propose a novel polynomial-time adaptive sorting algorithm with guaranteed performance improvement. Simulations and analyses of two real single-cell RNA sequencing datasets demonstrate the superiority of our algorithm over existing methods.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.