Chloé Carer, Leonhard Xaver Driever, Stein Köbben, Max Mckenzie, Fredrik Rhenman, Onno Van de Sype, J. V. D. Toorn, C. V. Wezel, Constança Miranda de Andrade Veiga, Aleksandrs Vinarskis, B. Jyoti
{"title":"Effect of Parameter Variation on the Viscosity of Ethanol Gel Propellants","authors":"Chloé Carer, Leonhard Xaver Driever, Stein Köbben, Max Mckenzie, Fredrik Rhenman, Onno Van de Sype, J. V. D. Toorn, C. V. Wezel, Constança Miranda de Andrade Veiga, Aleksandrs Vinarskis, B. Jyoti","doi":"10.1590/JATM.V13.1196","DOIUrl":null,"url":null,"abstract":"This research investigated how the variation of temperature and shear rate affects the viscosity of ethanol gel propellants that use methyl cellulose as gellant and, in parts, use boron as energetic additive. Using a rotational viscometer in a cone-and-plate configuration, propellant viscosity data was recorded across a range of temperatures and applied shear rates. The temperature dependence of the viscosity was modelled using an Arrhenius-type equation. For the high shear rates, the data was modelled using the Power Law, Herrschel–Bulkley model, Carreau model, and Cross model. For low shear rates the used model was the rearranged Herrschel–Bulkley model. The temperature investigation suggested that the trend of decreasing viscosity with increasing temperature, predicted by the Arrhenius-type equation, is only applicable until approximately 320 K, after which the gel viscosity increased strongly. At high shear rates, the gel behaved in a shear thinning manner and was modelled most accurately by the Cross model. At low shear rates, the gel was shear thickening up to its elastic limit, which was found to lie at 0.41 s–1.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/JATM.V13.1196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4
Abstract
This research investigated how the variation of temperature and shear rate affects the viscosity of ethanol gel propellants that use methyl cellulose as gellant and, in parts, use boron as energetic additive. Using a rotational viscometer in a cone-and-plate configuration, propellant viscosity data was recorded across a range of temperatures and applied shear rates. The temperature dependence of the viscosity was modelled using an Arrhenius-type equation. For the high shear rates, the data was modelled using the Power Law, Herrschel–Bulkley model, Carreau model, and Cross model. For low shear rates the used model was the rearranged Herrschel–Bulkley model. The temperature investigation suggested that the trend of decreasing viscosity with increasing temperature, predicted by the Arrhenius-type equation, is only applicable until approximately 320 K, after which the gel viscosity increased strongly. At high shear rates, the gel behaved in a shear thinning manner and was modelled most accurately by the Cross model. At low shear rates, the gel was shear thickening up to its elastic limit, which was found to lie at 0.41 s–1.