Topological Process of Splitting DNA-Links

Q2 Agricultural and Biological Sciences Biomath Pub Date : 2022-05-16 DOI:10.55630/j.biomath.2022.03.288
A. A. Mohamad, T. Yashiro
{"title":"Topological Process of Splitting DNA-Links","authors":"A. A. Mohamad, T. Yashiro","doi":"10.55630/j.biomath.2022.03.288","DOIUrl":null,"url":null,"abstract":"A DNA replicon is modeled by a special type of 2-component link, called a DNA-link, in which two circles form a double helix around a trivial center core curve. The DNA replication process is semi-conservative, which is interpreted as a splitting process of the DNA-link. To split this non-trivial link, the linking number must become zero, and thus an unknotting operation is necessary. Some families of enzymes act as the unknotting operation. The present paper considers two topological problems; one is to know how the linking number is reduced and the other, how the enzymes are allocated at appropriate places. For the first problem, we suggest a reduction system of the linking number of a DNA-link. From this system, the number of repetitions of the procedure is obtained and this could be reduced when the DNA is previously relaxed by type I topoisomerases. For the second problem, we propose a possible conformation of the DNA-link in which the unknotting operation does not change the knot type of the core curve but decreases the writhe. This conformation could allocate type II topoisomerases to appropriate places. These models suggest that the combination of type I and type II topoisomerases efficiently reduces the linking number and it is possible to allocate enzymes by the conformation of DNA strands.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2022.03.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

A DNA replicon is modeled by a special type of 2-component link, called a DNA-link, in which two circles form a double helix around a trivial center core curve. The DNA replication process is semi-conservative, which is interpreted as a splitting process of the DNA-link. To split this non-trivial link, the linking number must become zero, and thus an unknotting operation is necessary. Some families of enzymes act as the unknotting operation. The present paper considers two topological problems; one is to know how the linking number is reduced and the other, how the enzymes are allocated at appropriate places. For the first problem, we suggest a reduction system of the linking number of a DNA-link. From this system, the number of repetitions of the procedure is obtained and this could be reduced when the DNA is previously relaxed by type I topoisomerases. For the second problem, we propose a possible conformation of the DNA-link in which the unknotting operation does not change the knot type of the core curve but decreases the writhe. This conformation could allocate type II topoisomerases to appropriate places. These models suggest that the combination of type I and type II topoisomerases efficiently reduces the linking number and it is possible to allocate enzymes by the conformation of DNA strands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA链断裂的拓扑过程
DNA复制子是由一种特殊类型的双组分连接建模的,称为DNA连接,其中两个圆围绕一条琐碎的中心-核心曲线形成双螺旋。DNA复制过程是半保守的,这被解释为DNA链的分裂过程。要拆分这个非平凡的链接,链接数必须为零,因此需要进行unknoting操作。一些酶家族起着解开面纱的作用。本文考虑了两个拓扑问题;一个是知道连接数是如何减少的,另一个是酶是如何在适当的位置分配的。对于第一个问题,我们提出了一个DNA连接数的减少系统。从该系统中,获得了该过程的重复次数,并且当DNA先前被I型拓扑异构酶松弛时,这可以减少。对于第二个问题,我们提出了一种可能的DNA连接构象,其中解开操作不会改变核心曲线的结类型,但会减少扭曲。这种构象可以将II型拓扑异构酶分配到合适的位置。这些模型表明,I型和II型拓扑异构酶的组合有效地减少了连接数,并且有可能通过DNA链的构象来分配酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
期刊最新文献
Analysis of hemodynamic parameters on two-layered blood flow in a curved artery Comparative analysis of two chemostat models including substrate and biomass inhibitions Integrating mixed reality technologies in genomic data visualization and analysis for bioinformatics research Dynamical analysis combined with parameter identification for a model of infection in honeybee colonies with social immunity Parameter sensitivity analysis for CO-mediated sickle cell de-polymerization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1