Bayesian Multiple Changepoint Detection for Stochastic Models in Continuous Time

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2021-06-01 DOI:10.1214/20-ba1218
Lu Shaochuan
{"title":"Bayesian Multiple Changepoint Detection for Stochastic Models in Continuous Time","authors":"Lu Shaochuan","doi":"10.1214/20-ba1218","DOIUrl":null,"url":null,"abstract":"A multiple changepoint model in continuous time is formulated as a continuous-time hidden Markov model, defined on a countable infinite state space. The new formulation of the multiple changepoint model allows the model complexities, i.e. the number of changepoints, to accrue unboundedly upon the arrivals of new data. Inference on the number of changepoints and their locations is based on a collapsed Gibbs sampler. We suggest a new version of forward-filtering backward-sampling (FFBS) algorithm in continuous time for simulating the full trajectory of the latent Markov chain, i.e. the changepoints. The FFBS algorithm is based on a randomized time-discretization for the latent Markov chain through uniformization schemes, combined with a discrete-time version of FFBS algorithm. It is shown that, desirably, both the computational cost and the memory cost of the FFBS algorithm are only quadratic to the number of changepoints. The new formulation of the multiple changepoint models allows varying scale of run lengths of changepoints to be characterized. We demonstrate the methods through simulations and a real data example for earthquakes.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-ba1218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

A multiple changepoint model in continuous time is formulated as a continuous-time hidden Markov model, defined on a countable infinite state space. The new formulation of the multiple changepoint model allows the model complexities, i.e. the number of changepoints, to accrue unboundedly upon the arrivals of new data. Inference on the number of changepoints and their locations is based on a collapsed Gibbs sampler. We suggest a new version of forward-filtering backward-sampling (FFBS) algorithm in continuous time for simulating the full trajectory of the latent Markov chain, i.e. the changepoints. The FFBS algorithm is based on a randomized time-discretization for the latent Markov chain through uniformization schemes, combined with a discrete-time version of FFBS algorithm. It is shown that, desirably, both the computational cost and the memory cost of the FFBS algorithm are only quadratic to the number of changepoints. The new formulation of the multiple changepoint models allows varying scale of run lengths of changepoints to be characterized. We demonstrate the methods through simulations and a real data example for earthquakes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续时间随机模型的贝叶斯多变化点检测
将连续时间下的多变点模型表述为定义在可数无限状态空间上的连续时间隐马尔可夫模型。多更改点模型的新公式允许模型复杂性,即更改点的数量,在新数据到达时无限制地累积。对变化点的数量及其位置的推断是基于一个折叠的吉布斯采样器。我们提出了一种新的连续时间前向滤波后向采样(FFBS)算法,用于模拟潜在马尔可夫链(即变化点)的完整轨迹。FFBS算法通过均匀化方案对潜在马尔可夫链进行随机时间离散化,并结合离散时间版本的FFBS算法。结果表明,FFBS算法的计算成本和内存成本都仅是变化点数量的二次元。多变化点模型的新公式允许变化尺度的变化点运行长度的特征。通过模拟和实际地震数据实例对方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1