Xiaolu Hu, Guibing Shi, Yifan Lai, Li Wang, Juntao Yu
{"title":"Loss Calculation and Thermal Analysis of High-speed Magnetic Suspension Amorphous Motor","authors":"Xiaolu Hu, Guibing Shi, Yifan Lai, Li Wang, Juntao Yu","doi":"10.13052/ijfp1439-9776.2431","DOIUrl":null,"url":null,"abstract":"High loss density, small volume and difficulty heat dissipation become important factors restricting the development of high-speed motor. In this paper, a new type of high-speed magnetic suspension amorphous motor was studied and its loss and temperature rise were analysed. The influence of cooling fan on air friction loss and cooling effect under different working conditions was studied through fluid analysis. The advantages of magnetic suspension amorphous motor were verified by analysing temperature distribution and efficiency under different conditions. The accuracy of the simulation results was verified by building an experimental platform to test the temperature of the prototype. It is showed that the application of new materials and new technologies is of great significance to improve the efficiency and stability of traditional motors.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High loss density, small volume and difficulty heat dissipation become important factors restricting the development of high-speed motor. In this paper, a new type of high-speed magnetic suspension amorphous motor was studied and its loss and temperature rise were analysed. The influence of cooling fan on air friction loss and cooling effect under different working conditions was studied through fluid analysis. The advantages of magnetic suspension amorphous motor were verified by analysing temperature distribution and efficiency under different conditions. The accuracy of the simulation results was verified by building an experimental platform to test the temperature of the prototype. It is showed that the application of new materials and new technologies is of great significance to improve the efficiency and stability of traditional motors.