Investigations of correlation and coherence in turbulence from a large-eddy simulation

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Wind Energy Science Pub Date : 2023-04-06 DOI:10.5194/wes-8-487-2023
Regis Thedin, E. Quon, M. Churchfield, P. Veers
{"title":"Investigations of correlation and coherence in turbulence from a large-eddy simulation","authors":"Regis Thedin, E. Quon, M. Churchfield, P. Veers","doi":"10.5194/wes-8-487-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Microscale flow descriptions are often given in terms of mean quantities, turbulent kinetic energy, and/or stresses. Those metrics, while valuable, give limited information about turbulent eddies and coherent turbulent structures. This work investigates the structure of an atmospheric boundary layer using coherence and correlation in space and time with a range of separation distances. We calculate spatial correlations over entire planes of velocity fluctuations, from which we can evaluate the correlation along different directions at different spacings. Similarly, coherence of the three velocity components over separations in the three directions is also investigated. We apply these analyses to a mesoscale–microscale coupled scenario with time-varying conditions and examine nuances in spatial correlations that are often overlooked. Through these analyses and results, this work highlights important differences observed in terms of coherence when comparing large-eddy simulation data to simpler models and suggests ways to improve these simpler models. We note that such differences are important for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend strongly on the structure of the turbulence. We emphasize the additional wealth of data that can be provided by typical atmospheric boundary layer large-eddy simulation when correlation and coherence analysis is included, and we also state the limitations of large-eddy simulation data, which inherently truncate the smaller scales of turbulence.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-487-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Microscale flow descriptions are often given in terms of mean quantities, turbulent kinetic energy, and/or stresses. Those metrics, while valuable, give limited information about turbulent eddies and coherent turbulent structures. This work investigates the structure of an atmospheric boundary layer using coherence and correlation in space and time with a range of separation distances. We calculate spatial correlations over entire planes of velocity fluctuations, from which we can evaluate the correlation along different directions at different spacings. Similarly, coherence of the three velocity components over separations in the three directions is also investigated. We apply these analyses to a mesoscale–microscale coupled scenario with time-varying conditions and examine nuances in spatial correlations that are often overlooked. Through these analyses and results, this work highlights important differences observed in terms of coherence when comparing large-eddy simulation data to simpler models and suggests ways to improve these simpler models. We note that such differences are important for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend strongly on the structure of the turbulence. We emphasize the additional wealth of data that can be provided by typical atmospheric boundary layer large-eddy simulation when correlation and coherence analysis is included, and we also state the limitations of large-eddy simulation data, which inherently truncate the smaller scales of turbulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大涡模拟研究湍流的相关性和相干性
摘要微观尺度的流动描述通常是根据平均量、湍流动能和/或应力给出的。这些指标虽然有价值,但对湍流涡流和连贯湍流结构提供的信息有限。本文利用空间和时间上的相干性和相关性在一定的分离距离范围内研究了大气边界层的结构。我们计算了整个速度波动平面的空间相关性,从中我们可以评估在不同间距沿不同方向的相关性。同样,三个速度分量在三个方向上的相干性也进行了研究。我们将这些分析应用于具有时变条件的中尺度-微观耦合场景,并检查经常被忽视的空间相关性中的细微差别。通过这些分析和结果,本工作强调了将大涡模拟数据与简单模型进行比较时在相干性方面观察到的重要差异,并提出了改进这些简单模型的方法。我们注意到,这种差异对于风能结构动力分析等学科很重要,在这些学科中,叶片载荷和疲劳在很大程度上取决于湍流的结构。我们强调了当包含相关和相干分析时,典型的大气边界层大涡模拟可以提供额外的丰富数据,并且我们也说明了大涡模拟数据的局限性,它固有地截断了较小尺度的湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
期刊最新文献
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar A new methodology for upscaling semi-submersible platforms for floating offshore wind turbines An analytical linear two-dimensional actuator disc model and comparisons with computational fluid dynamics (CFD) simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1