The DSP concentrate sinter-leach process for aluminium and sodium recovery 2: leaching behaviour

H. Hodge, P. Hayes, W. Hawker, J. Vaughan
{"title":"The DSP concentrate sinter-leach process for aluminium and sodium recovery 2: leaching behaviour","authors":"H. Hodge, P. Hayes, W. Hawker, J. Vaughan","doi":"10.1080/25726641.2020.1791681","DOIUrl":null,"url":null,"abstract":"ABSTRACT The novel Sandy DSP Sinter-Leach process provides a lower energy intensity method for the recovery of sodium and aluminium lost to bauxite residue. The present study is an investigation into the leaching unit of this process. Two different sinter products designed to simulate major sintering process options were leached. Leaching temperature and time were varied for both feed materials and it was found that reductive sintering yielded a product with the highest leachability under all conditions. Higher concentrations of Ca2Fe2O5 in the sinter product was linked to deleterious side reactions in leaching, which significantly reduced the aluminium recovery. A set of chemical reactions are proposed to describe the leaching step and strategies to mitigate the side reactions are discussed.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"131 1","pages":"69 - 78"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726641.2020.1791681","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2020.1791681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The novel Sandy DSP Sinter-Leach process provides a lower energy intensity method for the recovery of sodium and aluminium lost to bauxite residue. The present study is an investigation into the leaching unit of this process. Two different sinter products designed to simulate major sintering process options were leached. Leaching temperature and time were varied for both feed materials and it was found that reductive sintering yielded a product with the highest leachability under all conditions. Higher concentrations of Ca2Fe2O5 in the sinter product was linked to deleterious side reactions in leaching, which significantly reduced the aluminium recovery. A set of chemical reactions are proposed to describe the leaching step and strategies to mitigate the side reactions are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于铝和钠回收的DSP精矿烧结浸出工艺2:浸出行为
新型的砂式DSP烧结浸出工艺为回收铝土矿渣中损失的钠和铝提供了一种低能量强度的方法。本文对该工艺的浸出单元进行了研究。设计了两种不同的烧结产品来模拟主要的烧结工艺选择。两种原料的浸出温度和浸出时间不同,发现在所有条件下还原烧结产生的产品浸出率最高。烧结产物中较高浓度的Ca2Fe2O5与浸出过程中的有害副反应有关,这大大降低了铝的回收率。提出了一组化学反应来描述浸出步骤,并讨论了减轻副反应的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
期刊最新文献
Dissolution of gold in the presence of copper ion and diethylenetriamine (DETA) Adsorption of tannic acid as depressant in the flotation separation of fluorite and bastnaesite Demonstration of dry magnetic separation to upgrade the Mn:Fe ratio of a ferromanganese ore sample A mathematical model of a twin-shaft parallel flow regenerative lime kiln Beneficiation of a Nigerian lepidolite ore by sulfuric acid leaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1