{"title":"An Efficient Game for Coordinating Electric Vehicle Charging","authors":"Suli Zou;Zhongjing Ma;Xiangdong Liu;Ian Hiskens","doi":"10.1109/TAC.2016.2614106","DOIUrl":null,"url":null,"abstract":"A novel class of auction-based games is formulated to study coordination problems arising from charging a population of electric vehicles (EVs) over a finite horizon. To compete for energy allocation over the horizon, each individual EV submits a multidimensional bid, with the dimension equal to two times the number of time-steps in the horizon. Use of the progressive second price (PSP) auction mechanism ensures that incentive compatibility holds for the auction games. However, due to the cross elasticity of EVs over the charging horizon, the marginal valuation of an individual EV at a particular time is determined by both the demand at that time and the total demand over the entire horizon. This difficulty is addressed by partitioning the allowable set of bid profiles based on the total desired energy over the entire horizon. It is shown that the efficient bid profile over the charging horizon is a Nash equilibrium of the underlying auction game. An update mechanism for the auction game is designed. A numerical example demonstrates that the auction process converges to an efficient Nash equilibrium. The auction-based charging coordination scheme is adapted to a receding horizon formulation to account for disturbances and forecast uncertainty.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"62 5","pages":"2374-2389"},"PeriodicalIF":7.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAC.2016.2614106","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/7577848/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 49
Abstract
A novel class of auction-based games is formulated to study coordination problems arising from charging a population of electric vehicles (EVs) over a finite horizon. To compete for energy allocation over the horizon, each individual EV submits a multidimensional bid, with the dimension equal to two times the number of time-steps in the horizon. Use of the progressive second price (PSP) auction mechanism ensures that incentive compatibility holds for the auction games. However, due to the cross elasticity of EVs over the charging horizon, the marginal valuation of an individual EV at a particular time is determined by both the demand at that time and the total demand over the entire horizon. This difficulty is addressed by partitioning the allowable set of bid profiles based on the total desired energy over the entire horizon. It is shown that the efficient bid profile over the charging horizon is a Nash equilibrium of the underlying auction game. An update mechanism for the auction game is designed. A numerical example demonstrates that the auction process converges to an efficient Nash equilibrium. The auction-based charging coordination scheme is adapted to a receding horizon formulation to account for disturbances and forecast uncertainty.
期刊介绍:
In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered:
1) Papers: Presentation of significant research, development, or application of control concepts.
2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions.
In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.