Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity

IF 1.4 Q3 ECONOMICS Econometrics Pub Date : 2017-07-28 DOI:10.3390/ECONOMETRICS5030033
Junrong Liu, R. Sickles, E. Tsionas
{"title":"Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity","authors":"Junrong Liu, R. Sickles, E. Tsionas","doi":"10.3390/ECONOMETRICS5030033","DOIUrl":null,"url":null,"abstract":"This paper considers a linear panel data model with time varying heterogeneity. Bayesian inference techniques organized around Markov chain Monte Carlo (MCMC) are applied to implement new estimators that combine smoothness priors on unobserved heterogeneity and priors on the factor structure of unobserved effects. The latter have been addressed in a non-Bayesian framework by Bai (2009) and Kneip et al. (2012), among others. Monte Carlo experiments are used to examine the finite-sample performance of our estimators. An empirical study of efficiency trends in the largest banks operating in the U.S. from 1990 to 2009 illustrates our new estimators. The study concludes that scale economies in intermediation services have been largely exploited by these large U.S. banks.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"5 1","pages":"33"},"PeriodicalIF":1.4000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ECONOMETRICS5030033","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ECONOMETRICS5030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 11

Abstract

This paper considers a linear panel data model with time varying heterogeneity. Bayesian inference techniques organized around Markov chain Monte Carlo (MCMC) are applied to implement new estimators that combine smoothness priors on unobserved heterogeneity and priors on the factor structure of unobserved effects. The latter have been addressed in a non-Bayesian framework by Bai (2009) and Kneip et al. (2012), among others. Monte Carlo experiments are used to examine the finite-sample performance of our estimators. An empirical study of efficiency trends in the largest banks operating in the U.S. from 1990 to 2009 illustrates our new estimators. The study concludes that scale economies in intermediation services have been largely exploited by these large U.S. banks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有时变异质性的面板数据随机前沿模型的Bayes处理
本文考虑具有时变异质性的线性面板数据模型。应用围绕马尔可夫链蒙特卡罗(MCMC)组织的贝叶斯推理技术来实现新的估计器,该估计器结合了未观察到异质性的平滑先验和未观察到效应的因子结构先验。后者已由Bai(2009)和Kneip等人(2012)等在非贝叶斯框架中解决。蒙特卡罗实验用于检验我们的估计器的有限样本性能。对1990年至2009年在美国运营的最大银行的效率趋势进行的实证研究证明了我们的新估计。该研究的结论是,这些大型美国银行在很大程度上利用了中介服务的规模经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1