Lisa Schulz, Philipp Stähle, Sven Reining, Mathias Sawall, Norbert Kockmann, Thorsten Röder
{"title":"Multivariate curve resolution for kinetic modeling and scale-up prediction","authors":"Lisa Schulz, Philipp Stähle, Sven Reining, Mathias Sawall, Norbert Kockmann, Thorsten Röder","doi":"10.1007/s41981-022-00252-y","DOIUrl":null,"url":null,"abstract":"<p>An imine synthesis was investigated in a nearly isothermal oscillating segmented flow microreactor at different temperatures using non-invasive Raman spectroscopy. Multivariate curve resolution provided a calibration-free approach for obtaining kinetic parameters. The two different multivariate curve resolution approaches, soft and hard modeling, were applied and contrasted, leading to similar results. Taking heat and mass balance into account, the proposed kinetic model was applied for a model-based scale-up prediction. Finally, the reaction was performed in a 0.5 L semi-batch reactor, followed by in-line Raman spectroscopy and off-line gas chromatography analysis. The successful scale-up was demonstrated with a good agreement between measured and predicted concentration profiles.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 1","pages":"13 - 19"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-022-00252-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-022-00252-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An imine synthesis was investigated in a nearly isothermal oscillating segmented flow microreactor at different temperatures using non-invasive Raman spectroscopy. Multivariate curve resolution provided a calibration-free approach for obtaining kinetic parameters. The two different multivariate curve resolution approaches, soft and hard modeling, were applied and contrasted, leading to similar results. Taking heat and mass balance into account, the proposed kinetic model was applied for a model-based scale-up prediction. Finally, the reaction was performed in a 0.5 L semi-batch reactor, followed by in-line Raman spectroscopy and off-line gas chromatography analysis. The successful scale-up was demonstrated with a good agreement between measured and predicted concentration profiles.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.