{"title":"Solution methods to the nearest rotation matrix problem in ℝ3 : A comparative survey","authors":"Soheil Sarabandi, Federico Thomas","doi":"10.1002/nla.2492","DOIUrl":null,"url":null,"abstract":"Nowadays, the singular value decomposition (SVD) is the standard method of choice for solving the nearest rotation matrix problem. Nevertheless, many other methods are available in the literature for the 3D case. This article reviews the most representative ones, proposes alternative ones, and presents a comparative analysis to elucidate their relative computational costs and error performances. This analysis leads to the conclusion that some algebraic closed‐form methods are as robust as the SVD, but significantly faster and more accurate.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2492","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, the singular value decomposition (SVD) is the standard method of choice for solving the nearest rotation matrix problem. Nevertheless, many other methods are available in the literature for the 3D case. This article reviews the most representative ones, proposes alternative ones, and presents a comparative analysis to elucidate their relative computational costs and error performances. This analysis leads to the conclusion that some algebraic closed‐form methods are as robust as the SVD, but significantly faster and more accurate.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.