{"title":"Scalable 3D mapping of cities using computer vision and signals of opportunity","authors":"A. Bassiri, Terence Lines, Miguel Fidel Pereira","doi":"10.1080/13658816.2023.2191674","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional (3D) maps are used extensively in a variety of applications, from air and noise pollution modelling to location-based services such as 3D mapping-aided Global Navigation Satellite Systems (GNSS), and positioning and navigation for emergency service personnel, unmanned aerial vehicles and autonomous vehicles. However, the financial cost associated with creating and updating 3D maps using the current state-of-the-art methods such as laser scanning and aerial photogrammetry are prohibitively expensive. To overcome this, researchers have proposed using GNSS signals to create 3D maps. This paper advances that family of methods by proposing and implementing a novel technique that avoids the difficult step of directly classifying GNSS signals into line-of-sight and non-line-of-sight classes by utilising edge detection techniques adapted from computer vision. This prevents classification biases and increases the range of environments in which GNSS-based 3D mapping methods can be accurately deployed. Being based on the patterns of blockage and attenuation of GNSS signals that are freely and globally available to receive by many mobile phones, makes the proposed technique a free, scalable and accessible solution. This paper also identifies some key indicators affecting data collection scalability and efficiency of the 3D mapping solution.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1470 - 1495"},"PeriodicalIF":4.3000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2191674","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Three-dimensional (3D) maps are used extensively in a variety of applications, from air and noise pollution modelling to location-based services such as 3D mapping-aided Global Navigation Satellite Systems (GNSS), and positioning and navigation for emergency service personnel, unmanned aerial vehicles and autonomous vehicles. However, the financial cost associated with creating and updating 3D maps using the current state-of-the-art methods such as laser scanning and aerial photogrammetry are prohibitively expensive. To overcome this, researchers have proposed using GNSS signals to create 3D maps. This paper advances that family of methods by proposing and implementing a novel technique that avoids the difficult step of directly classifying GNSS signals into line-of-sight and non-line-of-sight classes by utilising edge detection techniques adapted from computer vision. This prevents classification biases and increases the range of environments in which GNSS-based 3D mapping methods can be accurately deployed. Being based on the patterns of blockage and attenuation of GNSS signals that are freely and globally available to receive by many mobile phones, makes the proposed technique a free, scalable and accessible solution. This paper also identifies some key indicators affecting data collection scalability and efficiency of the 3D mapping solution.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.