{"title":"Automatic coordination control technology of interconnected medium voltage direct current (MVDC) distribution network based on frequency deviation","authors":"Kunyang Ji","doi":"10.21595/jve.2022.22849","DOIUrl":null,"url":null,"abstract":"The automatic coordination control technology of interconnected medium voltage direct current (MVDC) distribution network based on frequency deviation is studied to improve the influence of frequency deviation on the operation of MVDC distribution network. Firstly, two regional interconnected MVDC distribution networks are built, and connected and operated in parallel with the AC power grid through the medium voltage single-phase AC port, to realize the interconnection of different regions of the distribution network according to the MVDC feeder. Through the mutual power support of each division of the distribution network, the frequency of each division of the distribution network is the same, and the frequency deviation of each division is reduced. According to the zoning frequency characteristics of the interconnected MVDC distribution network, the control strategy of the flexible interconnection device and the control strategy of the photovoltaic power generation system are combined to realize the automatic coordinated control of the frequency deviation of the interconnected MVDC distribution network. The experimental results show that this technology can improve the frequency deviation of the interconnected MVDC distribution network, realize the automatic coordinated control of the distribution network, and the fluctuation range of the tie line power deviation in each region decreases significantly.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2022.22849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The automatic coordination control technology of interconnected medium voltage direct current (MVDC) distribution network based on frequency deviation is studied to improve the influence of frequency deviation on the operation of MVDC distribution network. Firstly, two regional interconnected MVDC distribution networks are built, and connected and operated in parallel with the AC power grid through the medium voltage single-phase AC port, to realize the interconnection of different regions of the distribution network according to the MVDC feeder. Through the mutual power support of each division of the distribution network, the frequency of each division of the distribution network is the same, and the frequency deviation of each division is reduced. According to the zoning frequency characteristics of the interconnected MVDC distribution network, the control strategy of the flexible interconnection device and the control strategy of the photovoltaic power generation system are combined to realize the automatic coordinated control of the frequency deviation of the interconnected MVDC distribution network. The experimental results show that this technology can improve the frequency deviation of the interconnected MVDC distribution network, realize the automatic coordinated control of the distribution network, and the fluctuation range of the tie line power deviation in each region decreases significantly.
期刊介绍:
Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.