{"title":"Effects of clay activation and amine chain length on silica–palygorskite heterostructure properties","authors":"L. Boudriche, F. Bergaya, A. Boudjemaa","doi":"10.1180/clm.2023.6","DOIUrl":null,"url":null,"abstract":"Abstract Various approaches have been used for the preparation of heterostructured materials based on clay minerals, with numerous potential applications offered by the resulting functional materials. In this study, a fibrous clay mineral (palygorskite) and a tetraethyl orthosilicate reagent were used to obtain silica–palygorskite heterostructures. The aim was to highlight the influence of two factors during the preparation process: the effect of acid activation pre-treatment of the palygorskite with HCl and the effect of varying the length of the amine chains used – dodecylamine and butylamine – on the formation and development of silica nanoparticles on the surface of the palygorskite fibres. The silica–palygorskite heterostructures were obtained after the removal of the organic templates by calcination at 500°C. The textural and structural properties of the silica–palygorskite heterostructured samples were determined using various experimental characterization techniques, such as X-ray diffraction, transmission electron microscopy, gas adsorption and Fourier-transform infrared spectroscopy. The experimental variables targeted in this study appeared to have a significant effect on the textural properties of the silica–palygorskite heterostructure obtained. The great specific surface area and the mesoporous, microporous and ultramicroporous volumes as determined using nitrogen and/or carbon dioxide gas adsorption confirm the benefit of combining the acid activation pre-treatment of the fibrous clay mineral with the use of a long-chain amine co-surfactant (dodecylamine). The resulting silica–palygorskite heterostucture has a great specific surface area (628 m2 g–1) and a well-developed total pore network (VN2 = 0.24 cm3 g–1; Vultra (CO2) = 0.18 cm3 g–1). This material will be tested for the removal of volatile organic compounds at low concentrations.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"58 1","pages":"19 - 25"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2023.6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Various approaches have been used for the preparation of heterostructured materials based on clay minerals, with numerous potential applications offered by the resulting functional materials. In this study, a fibrous clay mineral (palygorskite) and a tetraethyl orthosilicate reagent were used to obtain silica–palygorskite heterostructures. The aim was to highlight the influence of two factors during the preparation process: the effect of acid activation pre-treatment of the palygorskite with HCl and the effect of varying the length of the amine chains used – dodecylamine and butylamine – on the formation and development of silica nanoparticles on the surface of the palygorskite fibres. The silica–palygorskite heterostructures were obtained after the removal of the organic templates by calcination at 500°C. The textural and structural properties of the silica–palygorskite heterostructured samples were determined using various experimental characterization techniques, such as X-ray diffraction, transmission electron microscopy, gas adsorption and Fourier-transform infrared spectroscopy. The experimental variables targeted in this study appeared to have a significant effect on the textural properties of the silica–palygorskite heterostructure obtained. The great specific surface area and the mesoporous, microporous and ultramicroporous volumes as determined using nitrogen and/or carbon dioxide gas adsorption confirm the benefit of combining the acid activation pre-treatment of the fibrous clay mineral with the use of a long-chain amine co-surfactant (dodecylamine). The resulting silica–palygorskite heterostucture has a great specific surface area (628 m2 g–1) and a well-developed total pore network (VN2 = 0.24 cm3 g–1; Vultra (CO2) = 0.18 cm3 g–1). This material will be tested for the removal of volatile organic compounds at low concentrations.
期刊介绍:
Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.