Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola

Amandine Nucci, J. Janaszkiewicz, E. Rocha, Olaya Rendueles
{"title":"Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola","authors":"Amandine Nucci, J. Janaszkiewicz, E. Rocha, Olaya Rendueles","doi":"10.1101/2023.07.10.548335","DOIUrl":null,"url":null,"abstract":"Klebsiella variicola is an emergent human pathogen causing diverse infections, including in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of loss-of-function yielding reduced fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clone show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and is able to socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had truncated MrkH proteins many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were all isolated from human, mostly from urine. The decreased aggregation of these mutants could have important clinical implications as such clones could better disperse within the host allowing colonisation of other body sites and leading to systemic infections. One-sentence Summary Report of the emergence of a novel non-aggregative colony morphology in K. variicola and the first example of social exploitation in the Klebsiella genus.","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.10.548335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Klebsiella variicola is an emergent human pathogen causing diverse infections, including in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of loss-of-function yielding reduced fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clone show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and is able to socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had truncated MrkH proteins many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were all isolated from human, mostly from urine. The decreased aggregation of these mutants could have important clinical implications as such clones could better disperse within the host allowing colonisation of other body sites and leading to systemic infections. One-sentence Summary Report of the emergence of a novel non-aggregative colony morphology in K. variicola and the first example of social exploitation in the Klebsiella genus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变异克雷伯菌在负频率依赖性选择下出现新的非聚集性变体
水痘克雷伯氏菌是一种紧急的人类病原体,引起多种感染,包括尿路感染。然而,人们对该物种遗传多样性的进化和维持、分子机制及其种群动态知之甚少。在这里,我们描述了一种新的rdar样形态的出现,这种形态取决于遗传背景和环境。我们发现氮同化控制基因(nac)或III型菌毛调节基因mrkH的突变足以产生rdar样菌落。这些形态的选择主要是因为细胞间聚集的减少,这是由于功能丧失导致的毛表达减少。此外,这些克隆还显示出生长速度加快和生物膜形成减少。rdar与野生型克隆之间的直接竞争表明,mrkH突变具有较大的适应度优势。在人工尿液中,该形态在强烈的负频率依赖选择下,能够社会性地利用野生型菌株。在公共数据库中对mrkH突变体的详尽搜索显示,大约8%的天然分离株被截断mrkH蛋白,其中许多是由于IS元件的插入,包括报道的具有rdar形态的临床分离株。这些菌株都是从人体中分离出来的,大部分是从尿液中分离出来的。这些突变体聚集的减少可能具有重要的临床意义,因为这样的克隆可以更好地在宿主内分散,从而允许定植其他身体部位并导致全身感染。报道了一种新的非聚集性天花菌落形态的出现和克雷伯氏菌属社会利用的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Functional characterization of the DUF1127-containing small protein YjiS of Salmonella Typhimurium. Did organs precede organisms in the origin of life? The proteomic response of Aspergillus fumigatus to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance. Accessing microbial natural products of the past. Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen Aspergillus fumigatus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1