Pub Date : 2024-12-23eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae025
Fernando Baquero, Gabriel S Bever, Victor de Lorenzo, Val Fernández-Lanza, Carlos Briones
Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e. (re)-produced] by the assembly of their components, following an iterative process giving rise to nearly but not fully identical replicas, allowing for a prebiotic form of Darwinian evolution. Natural selection favored the more persistent assemblies, some possibly modifying their own internal structure, or even their environment, thereby acquiring function. We refer to these assemblies as proto-organs. In association with other assemblies (e.g. in a coacervate or encapsulated within a vesicle), such proto-organs could evolve and acquire a role within the collective when their coexistence favored the selection of the ensemble. Along millions of years, an extraordinarily small number of successful combinations of those proto-organs co-occurring in spatially individualizing compartments might have co-evolved forming a proto-metabolic and proto-genetic informative network, eventually leading to the selfreplication of a very few. Thus, interactions between encapsulated proto-organs would have had a much higher probability of evolving into proto-organisms than interactions among simpler molecules. Multimolecular forms evolve functions; thus, functional organs would have preceded organisms.
{"title":"Did organs precede organisms in the origin of life?","authors":"Fernando Baquero, Gabriel S Bever, Victor de Lorenzo, Val Fernández-Lanza, Carlos Briones","doi":"10.1093/femsml/uqae025","DOIUrl":"10.1093/femsml/uqae025","url":null,"abstract":"<p><p>Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e. (re)-produced] by the assembly of their components, following an iterative process giving rise to nearly but not fully identical replicas, allowing for a prebiotic form of Darwinian evolution. Natural selection favored the more persistent assemblies, some possibly modifying their own internal structure, or even their environment, thereby acquiring function. We refer to these assemblies as proto-organs. In association with other assemblies (e.g. in a coacervate or encapsulated within a vesicle), such proto-organs could evolve and acquire a role within the collective when their coexistence favored the selection of the ensemble. Along millions of years, an extraordinarily small number of successful combinations of those proto-organs co-occurring in spatially individualizing compartments might have co-evolved forming a proto-metabolic and proto-genetic informative network, eventually leading to the selfreplication of a very few. Thus, interactions between encapsulated proto-organs would have had a much higher probability of evolving into proto-organisms than interactions among simpler molecules. Multimolecular forms evolve functions; thus, functional organs would have preceded organisms.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae025"},"PeriodicalIF":0.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae023
Martin Klapper, Pierre Stallforth
Microbial natural products-low molecular weight compounds biosynthesized by microorganisms-form the foundation of important modern therapeutics, including antibiotics, immunomodulators, and anti-cancer agents. This perspective discusses and contrasts two emerging approaches for uncovering natural products of the past. On the one hand, ancestral sequence reconstruction allows recreating biosynthetic pathways that date back hundreds of millions of years. On the other hand, sequencing and de novo assembly of ancient DNA reveals the biosynthetic potential of ancient microbial communities up to 100 000 years. Together, these approaches unveil an otherwise hidden reservoir of functional and structural molecular diversity. They also offer new opportunities to study the biological function and evolution of these molecules within an archaeological context.
{"title":"Accessing microbial natural products of the past.","authors":"Martin Klapper, Pierre Stallforth","doi":"10.1093/femsml/uqae023","DOIUrl":"10.1093/femsml/uqae023","url":null,"abstract":"<p><p>Microbial natural products-low molecular weight compounds biosynthesized by microorganisms-form the foundation of important modern therapeutics, including antibiotics, immunomodulators, and anti-cancer agents. This perspective discusses and contrasts two emerging approaches for uncovering natural products of the past. On the one hand, ancestral sequence reconstruction allows recreating biosynthetic pathways that date back hundreds of millions of years. On the other hand, sequencing and <i>de novo</i> assembly of ancient DNA reveals the biosynthetic potential of ancient microbial communities up to 100 000 years. Together, these approaches unveil an otherwise hidden reservoir of functional and structural molecular diversity. They also offer new opportunities to study the biological function and evolution of these molecules within an archaeological context.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae023"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae022
Corissa Visser, Flora Rivieccio, Thomas Krüger, Franziska Schmidt, Zoltán Cseresnyés, Manfred Rohde, Marc Thilo Figge, Olaf Kniemeyer, Matthew G Blango, Axel A Brakhage
Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen Aspergillus fumigatus; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during in vitro A. fumigatus interaction. Fusion of EV marker proteins (CD63, CD9, and CD81) with a Nanoluciferase (NLuc) and a green fluorescent protein (GFP) facilitated their relative quantification by luminescence and visualization by a fluorescence signal. The use of an NLuc fused with a GFP is advantageous as it allows for quantification and visualization of EVs simultaneously without additional external manipulation and to distinguish subpopulations of EVs. Using this system, visualization and tracking of EVs was possible using confocal laser scanning microscopy and advanced imaging analysis. These experiments revealed the propensity of host cell-derived EVs to associate with the fungal cell wall and ultimately colocalize with the cell membrane of A. fumigatus hyphae in large numbers. In conclusion, we have created a series of tools to better define the complex interplay of host-derived EVs with microbial pathogens.
{"title":"Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen <i>Aspergillus fumigatus</i>.","authors":"Corissa Visser, Flora Rivieccio, Thomas Krüger, Franziska Schmidt, Zoltán Cseresnyés, Manfred Rohde, Marc Thilo Figge, Olaf Kniemeyer, Matthew G Blango, Axel A Brakhage","doi":"10.1093/femsml/uqae022","DOIUrl":"10.1093/femsml/uqae022","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen <i>Aspergillus fumigatus</i>; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during <i>in vitro A. fumigatus</i> interaction. Fusion of EV marker proteins (CD63, CD9, and CD81) with a Nanoluciferase (NLuc) and a green fluorescent protein (GFP) facilitated their relative quantification by luminescence and visualization by a fluorescence signal. The use of an NLuc fused with a GFP is advantageous as it allows for quantification and visualization of EVs simultaneously without additional external manipulation and to distinguish subpopulations of EVs. Using this system, visualization and tracking of EVs was possible using confocal laser scanning microscopy and advanced imaging analysis. These experiments revealed the propensity of host cell-derived EVs to associate with the fungal cell wall and ultimately colocalize with the cell membrane of <i>A. fumigatus</i> hyphae in large numbers. In conclusion, we have created a series of tools to better define the complex interplay of host-derived EVs with microbial pathogens.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae022"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae021
Vera Vollenweider, Flavie Roncoroni, Rolf Kümmerli
Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the blaTEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying blaTEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.
抗生素耐药性是全球健康日益关注的一个问题,需要创新和有效的策略来对付病原菌。由环境中的假单胞菌属产生的铁螯合苷元是一类新型的有前景的化合物,可通过铁饥饿诱导病原体生长停滞。虽然我们之前已经证明了吡咯并酰胺作为抗菌剂的功效,但我们对这些分子如何与抗生素相互作用并影响抗药性进化的认识仍然未知。在这里,我们研究了三种大肠杆菌菌株对吡咯并啶、头孢菌素类抗生素头孢唑肟和它们的复方制剂的耐药性进化倾向。我们使用了一株天真大肠杆菌野生型菌株和两株在染色体或昂贵的多拷贝质粒上携带 bla TEM-1 β-内酰胺酶基因的同源变异株,以探讨遗传背景对耐药性选择的影响。我们发现,在单一处理条件下,所有大肠杆菌变种都产生了对头孢他啶的强抗性和对吡呋丁的弱抗性。头孢他啶的耐药性与外膜孔蛋白基因(envZ 和 ompF)的突变有关,而吡咯烷酮的耐药性则与寡肽渗透酶(opp)操作子的突变有关。与此相反,头孢他啶耐药性表型在联合治疗中有所减弱,特别是在多拷贝质粒上携带 bla TEM-1 的大肠杆菌变体中。总之,我们的研究结果表明,头孢唑肟和吡蚜酮呈中性相互作用,吡蚜酮作为一种抗菌剂对携带质粒的大肠杆菌菌株特别有效,这可能是因为铁饥饿会影响细胞代谢和质粒复制。
{"title":"Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in <i>Escherichia coli</i>.","authors":"Vera Vollenweider, Flavie Roncoroni, Rolf Kümmerli","doi":"10.1093/femsml/uqae021","DOIUrl":"10.1093/femsml/uqae021","url":null,"abstract":"<p><p>Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental <i>Pseudomonas</i> spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three <i>Escherichia coli</i> strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive <i>E. coli</i> wildtype strain and two isogenic variants carrying the <i>bla</i> <sub>TEM-1</sub> β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all <i>E. coli</i> variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (<i>envZ</i> and <i>ompF</i>), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (<i>opp</i>) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the <i>E. coli</i> variant carrying <i>bla</i> <sub>TEM-1</sub> on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying <i>E. coli</i> strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae021"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae019
Johanna Hüttermann, Ruth Schmitz
Methanosarcina mazei is a model organism, providing a platform to explore methanoarchaeal regulation mechanisms on the transcriptional and translational level. This study investigates and evaluates various molecular tools to allow inducible gene expression in M. mazei. (i) The TetR/TetO system was utilized to induce expression of a designed antisense RNA directed against sRNA154 allowing to increase transcripts of asRNA154 (500-fold), resulting in a significant decrease of sRNA154 levels (tetracycline-induced knockdown mutant). Strong reduction of sRNA154 was further confirmed in the knockdown mutant by up to 50-fold decreased transcript levels of the genes nifH, glnK1 , and glnA1 , the stability of which is increased by sRNA154. (ii) For translational regulation, an RNA thermometer was designed and first-ever utilized in an archaeon, inserted into the 5'-untranslated region of a reporter gene, which showed enhanced protein expression upon a temperature shift from 30°C to 40°C. (iii) The long 5'-UTR of a trimethylamine (TMA)-inducible polycistronic mRNA was evaluated and studied as a potential genetic tool for induced gene expression on the translational level. However, we discovered TMA-dependent regulation occurs most likely on the transcript level. (iv) A new selection marker (nourseothricin resistance) was established for M. mazei using the streptothricin acetyltransferase gene. Taken together, our findings provide a foundation for future exploration of genetic regulation and inducible gene expression in M. mazei and other methanoarchaea, advancing genetic studies in these organisms and enhancing their potential for biotechnology applications.
{"title":"Compiling a versatile toolbox for inducible gene expression in <i>Methanosarcina mazei</i>.","authors":"Johanna Hüttermann, Ruth Schmitz","doi":"10.1093/femsml/uqae019","DOIUrl":"10.1093/femsml/uqae019","url":null,"abstract":"<p><p><i>Methanosarcina mazei</i> is a model organism, providing a platform to explore methanoarchaeal regulation mechanisms on the transcriptional and translational level. This study investigates and evaluates various molecular tools to allow inducible gene expression in <i>M. mazei</i>. (i) The TetR/TetO system was utilized to induce expression of a designed antisense RNA directed against sRNA<sub>154</sub> allowing to increase transcripts of asRNA<sub>154</sub> (500-fold), resulting in a significant decrease of sRNA<sub>154</sub> levels (tetracycline-induced knockdown mutant). Strong reduction of sRNA<sub>154</sub> was further confirmed in the knockdown mutant by up to 50-fold decreased transcript levels of the genes <i>nifH, glnK<sub>1</sub></i> , and <i>glnA<sub>1</sub></i> , the stability of which is increased by sRNA<sub>154</sub>. (ii) For translational regulation, an RNA thermometer was designed and first-ever utilized in an archaeon, inserted into the 5'-untranslated region of a reporter gene, which showed enhanced protein expression upon a temperature shift from 30°C to 40°C. (iii) The long 5'-UTR of a trimethylamine (TMA)-inducible polycistronic mRNA was evaluated and studied as a potential genetic tool for induced gene expression on the translational level. However, we discovered TMA-dependent regulation occurs most likely on the transcript level. (iv) A new selection marker (nourseothricin resistance) was established for <i>M. mazei</i> using the streptothricin acetyltransferase gene. Taken together, our findings provide a foundation for future exploration of genetic regulation and inducible gene expression in <i>M. mazei</i> and other methanoarchaea, advancing genetic studies in these organisms and enhancing their potential for biotechnology applications.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae019"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae020
Tania Miguel Trabajo, Isaline Guex, Manupriyam Dubey, Elvire Sarton-Lohéac, Helena Todorov, Xavier Richard, Christian Mazza, Jan Roelof van der Meer
Bacterial species interactions significantly shape growth and behavior in communities, determining the emergence of community functions. Typically, these interactions are studied through bulk population measurements, overlooking the role of cell-to-cell variability and spatial context. This study uses real-time surface growth measurements of thousands of sparsely positioned microcolonies to investigate interactions and kinetic variations in monocultures and cocultures of Pseudomonas putida and P. veronii under substrate competition (succinate) or substrate independence (d-mannitol and putrescine). In monoculture, microcolonies exhibited expected substrate-dependent expansion rates, but individual colony sizes were affected by founder cell density, spatial positioning, growth rates, and lag times. In coculture, substrate competition favored P. putida, but unexpectedly, reduced the maximum growth rates of both species. In contrast, 10% of P. veronii microcolonies under competition grew larger than expected, likely due to founder cell phenotypic variation and stochastic spatial positioning. These effects were alleviated under substrate independence. A linear relationship between founder cell ratios and final colony area ratios in local neighborhoods (6.5-65 µm radius) was observed in coculture, with its slope reflecting interaction type and strength. Measured slopes in the P. putida to P. veronii biomass ratio under competition were one-third reduced compared to kinetic predictions using a cell-agent growth model, which exometabolite analysis and simulations suggested may be due to metabolite cross-feeding or inhibitory compound production. This indicates additional factors beyond inherent monoculture growth kinetics driving spatial interactions. Overall, the study demonstrates how microcolony growth experiments offer valuable insights into bacterial interactions, from local to community-level dynamics.
细菌物种间的相互作用极大地影响了群落的生长和行为,决定了群落功能的出现。通常情况下,这些相互作用是通过大量群体测量来研究的,忽略了细胞间变异和空间环境的作用。本研究利用对数千个稀疏定位微菌落的实时表面生长测量,研究了在底物竞争(琥珀酸)或底物独立(d-甘露糖醇和腐胺)条件下,单培养和共培养的普氏假单胞菌和弗氏假单胞菌之间的相互作用和动力学变化。在单培养条件下,微菌落表现出预期的基质依赖性扩展率,但单个菌落的大小受创始细胞密度、空间定位、生长率和滞后时间的影响。在共培养过程中,基质竞争有利于 P. putida,但意外地降低了这两个物种的最大生长率。与此相反,在竞争条件下,10% 的 P. veronii 微菌落比预期长得大,这可能是由于创始细胞表型变化和随机空间定位造成的。在基质独立的情况下,这些影响得到了缓解。在共培养中观察到,在局部邻域(半径为 6.5-65 µm)中,始基细胞比率与最终菌落面积比率之间呈线性关系,其斜率反映了相互作用的类型和强度。在竞争条件下测得的 P. putida 与 P. veronii 生物量比率的斜率比使用细胞-代理生长模型进行的动力学预测低三分之一,外代谢物分析和模拟表明这可能是由于代谢物交叉进食或抑制性化合物的产生。这表明,除固有的单培养生长动力学外,还有其他因素在推动空间相互作用。总之,该研究展示了微菌落生长实验如何为细菌从局部到群落层面的相互作用提供有价值的见解。
{"title":"Inferring bacterial interspecific interactions from microcolony growth expansion.","authors":"Tania Miguel Trabajo, Isaline Guex, Manupriyam Dubey, Elvire Sarton-Lohéac, Helena Todorov, Xavier Richard, Christian Mazza, Jan Roelof van der Meer","doi":"10.1093/femsml/uqae020","DOIUrl":"10.1093/femsml/uqae020","url":null,"abstract":"<p><p>Bacterial species interactions significantly shape growth and behavior in communities, determining the emergence of community functions. Typically, these interactions are studied through bulk population measurements, overlooking the role of cell-to-cell variability and spatial context. This study uses real-time surface growth measurements of thousands of sparsely positioned microcolonies to investigate interactions and kinetic variations in monocultures and cocultures of <i>Pseudomonas putida</i> and <i>P. veronii</i> under substrate competition (succinate) or substrate independence (d-mannitol and putrescine). In monoculture, microcolonies exhibited expected substrate-dependent expansion rates, but individual colony sizes were affected by founder cell density, spatial positioning, growth rates, and lag times. In coculture, substrate competition favored <i>P. putida</i>, but unexpectedly, reduced the maximum growth rates of both species. In contrast, 10% of <i>P. veronii</i> microcolonies under competition grew larger than expected, likely due to founder cell phenotypic variation and stochastic spatial positioning. These effects were alleviated under substrate independence. A linear relationship between founder cell ratios and final colony area ratios in local neighborhoods (6.5-65 µm radius) was observed in coculture, with its slope reflecting interaction type and strength. Measured slopes in the <i>P. putida</i> to <i>P. veronii</i> biomass ratio under competition were one-third reduced compared to kinetic predictions using a cell-agent growth model, which exometabolite analysis and simulations suggested may be due to metabolite cross-feeding or inhibitory compound production. This indicates additional factors beyond inherent monoculture growth kinetics driving spatial interactions. Overall, the study demonstrates how microcolony growth experiments offer valuable insights into bacterial interactions, from local to community-level dynamics.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae020"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae018
Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aeruginosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.
{"title":"Acetylomics reveals an extensive acetylation diversity within <i>Pseudomonas aeruginosa</i>.","authors":"Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne","doi":"10.1093/femsml/uqae018","DOIUrl":"10.1093/femsml/uqae018","url":null,"abstract":"<p><p>Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first <i>Pseudomonas aeruginosa</i> PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within <i>P. aeruginosa</i> by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the <i>P. aeruginosa</i> acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae018"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae017
Axel A Brakhage
Microbiomes are shaped by abiotic factors like nutrients, oxygen availability, pH, temperature, and so on, but also by biotic factors including low molecular weight organic compounds referred to as natural products (NPs). Based on genome analyses, millions of these compounds are predicted to exist in nature, some of them have found important applications e.g. as antibiotics. Based on recent data I propose a model that some of these compounds function as microbial hub signaling compounds, i.e. they have a higher hierarchical influence on microbiomes. These compounds have direct effects e.g. by inhibiting microorganisms and thereby exclude them from a microbiome (excluded). Some microorganisms do not respond at all (nonresponder), others respond by producing themselves NPs like a second wave of information molecules (message responder) influencing other microorganisms, but conceivably a more limited spectrum. Some microorganisms may respond to the hub compounds with their chemical modification (message modifiers). This way, the modified NPs may have themselves signaling function for a subset of microorganisms. Finally, it is also likely that NPs act as food source (C- and/or N-source) for microorganisms specialized on their degradation. As a consequence, such specialized microorganisms are selectively recruited to the microbiota.
{"title":"Microbial hub signaling compounds: natural products disproportionally shape microbiome composition and structure.","authors":"Axel A Brakhage","doi":"10.1093/femsml/uqae017","DOIUrl":"10.1093/femsml/uqae017","url":null,"abstract":"<p><p>Microbiomes are shaped by abiotic factors like nutrients, oxygen availability, pH, temperature, and so on, but also by biotic factors including low molecular weight organic compounds referred to as natural products (NPs). Based on genome analyses, millions of these compounds are predicted to exist in nature, some of them have found important applications e.g. as antibiotics. Based on recent data I propose a model that some of these compounds function as microbial hub signaling compounds, i.e. they have a higher hierarchical influence on microbiomes. These compounds have direct effects e.g. by inhibiting microorganisms and thereby exclude them from a microbiome (excluded). Some microorganisms do not respond at all (nonresponder), others respond by producing themselves NPs like a second wave of information molecules (message responder) influencing other microorganisms, but conceivably a more limited spectrum. Some microorganisms may respond to the hub compounds with their chemical modification (message modifiers). This way, the modified NPs may have themselves signaling function for a subset of microorganisms. Finally, it is also likely that NPs act as food source (C- and/or N-source) for microorganisms specialized on their degradation. As a consequence, such specialized microorganisms are selectively recruited to the microbiota.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae017"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae016
Fariha Mostafa, Aileen Krüger, Tim Nies, Julia Frunzke, Kerstin Schipper, Anna Matuszyńska
Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.
{"title":"Microbial markets: socio-economic perspective in studying microbial communities.","authors":"Fariha Mostafa, Aileen Krüger, Tim Nies, Julia Frunzke, Kerstin Schipper, Anna Matuszyńska","doi":"10.1093/femsml/uqae016","DOIUrl":"10.1093/femsml/uqae016","url":null,"abstract":"<p><p>Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae016"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1093/femsml/uqae015
Larissa Kever, Qian Zhang, Aël Hardy, Philipp Westhoff, Yi Yu, Julia Frunzke
The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by Streptomyces. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant Streptomyces venezuelae with the apramycin-producing strain Streptoalloteichus tenebrarius. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.
{"title":"Resistance against aminoglycoside antibiotics via drug or target modification enables community-wide antiphage defense.","authors":"Larissa Kever, Qian Zhang, Aël Hardy, Philipp Westhoff, Yi Yu, Julia Frunzke","doi":"10.1093/femsml/uqae015","DOIUrl":"10.1093/femsml/uqae015","url":null,"abstract":"<p><p>The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by <i>Streptomyces</i>. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant <i>Streptomyces venezuelae</i> with the apramycin-producing strain <i>Streptoalloteichus tenebrarius</i>. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae015"},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}