首页 > 最新文献

microLife最新文献

英文 中文
"French Phage Network" annual conference-eighth meeting report.
Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqaf001
Carole Armal, Charles-Adrien Arnaud, Emilie Cenraud, Youn Le Cras, Pierre-Alexandre Pastouriaux, Callypso Pellegri, Laurent Debarbieux

The French Phage Network organizes a scientific meeting every year in which the community of researchers from academia and industry, as well as clinicians participate due to the growing interest in phage therapy. Although centered on giving exposure to future generations of scientists from the French community with senior investigators invited as main speakers, the meeting has also welcomed participants from other countries. Covering almost every aspect of bacteriophage biology, the meeting is an opportunity not only to expose the youngest to a broad range of topics, but also to share their most recent "work in progress" without undergoing a stringent selection process to obtain an oral presentation slot. This report reflects the dynamism of the research field on bacteriophages across multiple disciplines, including molecular and structural biology, ecology, evolution, therapy, and biotechnology.

{"title":"\"French Phage Network\" annual conference-eighth meeting report.","authors":"Carole Armal, Charles-Adrien Arnaud, Emilie Cenraud, Youn Le Cras, Pierre-Alexandre Pastouriaux, Callypso Pellegri, Laurent Debarbieux","doi":"10.1093/femsml/uqaf001","DOIUrl":"10.1093/femsml/uqaf001","url":null,"abstract":"<p><p>The French Phage Network organizes a scientific meeting every year in which the community of researchers from academia and industry, as well as clinicians participate due to the growing interest in phage therapy. Although centered on giving exposure to future generations of scientists from the French community with senior investigators invited as main speakers, the meeting has also welcomed participants from other countries. Covering almost every aspect of bacteriophage biology, the meeting is an opportunity not only to expose the youngest to a broad range of topics, but also to share their most recent \"work in progress\" without undergoing a stringent selection process to obtain an oral presentation slot. This report reflects the dynamism of the research field on bacteriophages across multiple disciplines, including molecular and structural biology, ecology, evolution, therapy, and biotechnology.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqaf001"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Compiling a versatile toolbox for inducible gene expression in Methanosarcina mazei.
Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqae028

[This corrects the article DOI: 10.1093/femsml/uqae019.].

{"title":"Correction to: Compiling a versatile toolbox for inducible gene expression in <i>Methanosarcina mazei</i>.","authors":"","doi":"10.1093/femsml/uqae028","DOIUrl":"https://doi.org/10.1093/femsml/uqae028","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/femsml/uqae019.].</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae028"},"PeriodicalIF":0.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.
Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqae027
Julia Plewka, Armando Alibrandi, Till L V Bornemann, Sarah P Esser, Tom L Stach, Katharina Sures, Jannis Becker, Cristina Moraru, André Soares, Rolando di Primio, Jens Kallmeyer, Alexander J Probst

Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, n-alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.

{"title":"Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.","authors":"Julia Plewka, Armando Alibrandi, Till L V Bornemann, Sarah P Esser, Tom L Stach, Katharina Sures, Jannis Becker, Cristina Moraru, André Soares, Rolando di Primio, Jens Kallmeyer, Alexander J Probst","doi":"10.1093/femsml/uqae027","DOIUrl":"10.1093/femsml/uqae027","url":null,"abstract":"<p><p>Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, <i>n</i>-alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae027"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterization of the DUF1127-containing small protein YjiS of Salmonella Typhimurium. 鼠伤寒沙门菌duf1127小蛋白YjiS的功能表征
Pub Date : 2025-01-03 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqae026
Elisa Venturini, Sandra Maaß, Thorsten Bischler, Dörte Becher, Jörg Vogel, Alexander J Westermann

Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for Salmonella pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS. Cell culture infection assays with Salmonella mutants lacking or overexpressing YjiS suggested this small protein to delay bacterial escape from macrophages. Mutant scanning of the protein's conserved, arginine-rich DUF1127 domain excluded a major effect of single amino acid substitutions on the infection phenotype. A comparative dual RNA-seq assay uncovered the molecular footprint of YjiS in the macrophage response to infection, with host effects related to oxidative stress and the cell cortex. Bacterial cell fractionation experiments demonstrated YjiS to associate with the inner membrane and proteins interacting with YjiS in pull-down experiments were enriched for inner membrane processes. Among the YjiS interactors was the two-component system SsrA/B, the master transcriptional activator of intracellular virulence genes and a suppressor of flagellar genes. Indeed, in the absence of YjiS, we observed elevated expression of motility genes and an increased number of flagella per bacterium. Together, our study points to a role for Salmonella YjiS as a membrane-associated timer of pathogen dissemination.

细菌小蛋白影响多种生理过程,但由于其体积小而带来的技术挑战阻碍了它们的系统鉴定和生化表征。为了寻找与沙门氏菌致病性相关的小蛋白,我们之前发现了一种54个氨基酸的蛋白YjiS,它在沙门氏菌的细胞内感染阶段被强烈诱导。在这里,我们开始进一步描述YjiS的作用。缺乏或过表达YjiS的沙门氏菌突变体的细胞培养感染实验表明,这种小蛋白可以延缓细菌从巨噬细胞中逃逸。对该蛋白保守的、富含精氨酸的DUF1127结构域的突变体扫描排除了单氨基酸替换对感染表型的主要影响。一项比较双RNA-seq分析揭示了YjiS在巨噬细胞对感染的反应中的分子足迹,其宿主效应与氧化应激和细胞皮层有关。细菌细胞分离实验表明,YjiS与内膜结合,下拉实验中与YjiS相互作用的蛋白在内膜过程中富集。在YjiS互作物中有双组分系统SsrA/B,它是细胞内毒力基因的主要转录激活因子和鞭毛基因的抑制因子。事实上,在没有YjiS的情况下,我们观察到运动基因的表达升高,每个细菌的鞭毛数量增加。总之,我们的研究指出了沙门氏菌YjiS作为病原体传播的膜相关计时器的作用。
{"title":"Functional characterization of the DUF1127-containing small protein YjiS of <i>Salmonella</i> Typhimurium.","authors":"Elisa Venturini, Sandra Maaß, Thorsten Bischler, Dörte Becher, Jörg Vogel, Alexander J Westermann","doi":"10.1093/femsml/uqae026","DOIUrl":"10.1093/femsml/uqae026","url":null,"abstract":"<p><p>Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for <i>Salmonella</i> pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS. Cell culture infection assays with <i>Salmonella</i> mutants lacking or overexpressing YjiS suggested this small protein to delay bacterial escape from macrophages. Mutant scanning of the protein's conserved, arginine-rich DUF1127 domain excluded a major effect of single amino acid substitutions on the infection phenotype. A comparative dual RNA-seq assay uncovered the molecular footprint of YjiS in the macrophage response to infection, with host effects related to oxidative stress and the cell cortex. Bacterial cell fractionation experiments demonstrated YjiS to associate with the inner membrane and proteins interacting with YjiS in pull-down experiments were enriched for inner membrane processes. Among the YjiS interactors was the two-component system SsrA/B, the master transcriptional activator of intracellular virulence genes and a suppressor of flagellar genes. Indeed, in the absence of YjiS, we observed elevated expression of motility genes and an increased number of flagella per bacterium. Together, our study points to a role for <i>Salmonella</i> YjiS as a membrane-associated timer of pathogen dissemination.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae026"},"PeriodicalIF":0.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subtilosin A production is influenced by surfactin levels in Bacillus subtilis.
Pub Date : 2025-01-02 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqae029
Caja Dinesen, Manca Vertot, Scott A Jarmusch, Carlos N Lozano-Andrade, Aaron J C Andersen, Ákos T Kovács

Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, Bacillus subtilis, produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A. We discovered that B. subtilis mutants lacking surfactin production exhibited higher production of subtilosin A compared to their parental wild-type strain. Additionally, spatial visualization of B. subtilis production of metabolites demonstrated that surfactin secreted by a wild-type colony could suppress subtilosin A production in an adjacent mutant colony lacking surfactin production. Reporter assays were performed using mutants in specific transcriptional regulators, which confirmed the role of ResD as an activator of the subtilosin A encoding biosynthetic gene cluster (BGC), while the removal of Rok and AbrB repressors increased the expression of the BGC, which was further enhanced by additional deletion of surfactin, suggesting that a so-far-unidentified regulator might mediate the influence of surfactin on production of subtilosin A. Our study reveals a regulatory influence of one secondary metabolite on another, highlighting that the function of secondary metabolites could be more complex than its influence on other organisms and interactions among secondary metabolites could also contribute to their ecological significance.

{"title":"Subtilosin A production is influenced by surfactin levels in <i>Bacillus subtilis</i>.","authors":"Caja Dinesen, Manca Vertot, Scott A Jarmusch, Carlos N Lozano-Andrade, Aaron J C Andersen, Ákos T Kovács","doi":"10.1093/femsml/uqae029","DOIUrl":"10.1093/femsml/uqae029","url":null,"abstract":"<p><p>Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, <i>Bacillus subtilis</i>, produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A. We discovered that <i>B. subtilis</i> mutants lacking surfactin production exhibited higher production of subtilosin A compared to their parental wild-type strain. Additionally, spatial visualization of <i>B. subtilis</i> production of metabolites demonstrated that surfactin secreted by a wild-type colony could suppress subtilosin A production in an adjacent mutant colony lacking surfactin production. Reporter assays were performed using mutants in specific transcriptional regulators, which confirmed the role of ResD as an activator of the subtilosin A encoding biosynthetic gene cluster (BGC), while the removal of Rok and AbrB repressors increased the expression of the BGC, which was further enhanced by additional deletion of surfactin, suggesting that a so-far-unidentified regulator might mediate the influence of surfactin on production of subtilosin A. Our study reveals a regulatory influence of one secondary metabolite on another, highlighting that the function of secondary metabolites could be more complex than its influence on other organisms and interactions among secondary metabolites could also contribute to their ecological significance.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae029"},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Did organs precede organisms in the origin of life? 在生命的起源中,器官先于有机体吗?
Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI: 10.1093/femsml/uqae025
Fernando Baquero, Gabriel S Bever, Victor de Lorenzo, Val Fernández-Lanza, Carlos Briones

Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e. (re)-produced] by the assembly of their components, following an iterative process giving rise to nearly but not fully identical replicas, allowing for a prebiotic form of Darwinian evolution. Natural selection favored the more persistent assemblies, some possibly modifying their own internal structure, or even their environment, thereby acquiring function. We refer to these assemblies as proto-organs. In association with other assemblies (e.g. in a coacervate or encapsulated within a vesicle), such proto-organs could evolve and acquire a role within the collective when their coexistence favored the selection of the ensemble. Along millions of years, an extraordinarily small number of successful combinations of those proto-organs co-occurring in spatially individualizing compartments might have co-evolved forming a proto-metabolic and proto-genetic informative network, eventually leading to the selfreplication of a very few. Thus, interactions between encapsulated proto-organs would have had a much higher probability of evolving into proto-organisms than interactions among simpler molecules. Multimolecular forms evolve functions; thus, functional organs would have preceded organisms.

作用于有组织分子群体的进化过程早于生物体的起源。这些益生元实体通过其组件的组装而独立地重复产生[即(重新)产生],经过一个迭代过程,产生了几乎相同但不完全相同的复制品,从而允许达尔文进化的益生元形式。自然选择倾向于更持久的组合,其中一些可能会改变自己的内部结构,甚至是环境,从而获得功能。我们把这些组合称为原始器官。当这些原始器官与其他集合(如凝聚体或囊泡内)结合在一起时,当它们的共存有利于集合的选择时,这些原始器官可以进化并在集体中获得一个角色。在数百万年的时间里,那些在空间个体化隔间中共同出现的原始器官的极少数成功组合可能共同进化形成了一个原始代谢和原始遗传信息网络,最终导致极少数器官的自我复制。因此,被封装的原始器官之间的相互作用比简单分子之间的相互作用更有可能进化成原始生物体。多分子形态进化功能;因此,功能器官应该先于有机体。
{"title":"Did organs precede organisms in the origin of life?","authors":"Fernando Baquero, Gabriel S Bever, Victor de Lorenzo, Val Fernández-Lanza, Carlos Briones","doi":"10.1093/femsml/uqae025","DOIUrl":"10.1093/femsml/uqae025","url":null,"abstract":"<p><p>Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e. (re)-produced] by the assembly of their components, following an iterative process giving rise to nearly but not fully identical replicas, allowing for a prebiotic form of Darwinian evolution. Natural selection favored the more persistent assemblies, some possibly modifying their own internal structure, or even their environment, thereby acquiring function. We refer to these assemblies as proto-organs. In association with other assemblies (e.g. in a coacervate or encapsulated within a vesicle), such proto-organs could evolve and acquire a role within the collective when their coexistence favored the selection of the ensemble. Along millions of years, an extraordinarily small number of successful combinations of those proto-organs co-occurring in spatially individualizing compartments might have co-evolved forming a proto-metabolic and proto-genetic informative network, eventually leading to the selfreplication of a very few. Thus, interactions between encapsulated proto-organs would have had a much higher probability of evolving into proto-organisms than interactions among simpler molecules. Multimolecular forms evolve functions; thus, functional organs would have preceded organisms.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae025"},"PeriodicalIF":0.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The proteomic response of Aspergillus fumigatus to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance. 烟曲霉对两性霉素B (AmB)的蛋白质组学反应揭示了rta样蛋白RtaA参与AmB抗性。
Pub Date : 2024-12-05 eCollection Date: 2025-01-01 DOI: 10.1093/femsml/uqae024
Ammar Abou-Kandil, Sophie Tröger-Görler, Annica Pschibul, Thomas Krüger, Maira Rosin, Franziska Schmidt, Parastoo Akbarimoghaddam, Arjun Sarkar, Zoltán Cseresnyés, Yana Shadkchan, Thorsten Heinekamp, Markus H Gräler, Amelia E Barber, Grit Walther, Marc Thilo Figge, Axel A Brakhage, Nir Osherov, Olaf Kniemeyer

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by Aspergillus fumigatus. Increasing resistance to AmB in clinical isolates of Aspergillus species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of A. fumigatus exposed to sublethal concentrations of AmB and AmBisome. Both antifungals induced significantly increased levels of proteins involved in aromatic acid metabolism, transmembrane transport, and secondary metabolite biosynthesis. One of the most upregulated proteins was RtaA, a member of the RTA-like protein family, which includes conserved fungal membrane proteins with putative functions as transporters or translocases. Accordingly, we found that RtaA is mainly located in the cytoplasmic membrane and to a minor extent in vacuolar-like structures. Deletion of rtaA led to increased polyene sensitivity and its overexpression resulted in modest resistance. Interestingly, rtaA expression was only induced by exposure to the polyenes AmB and nystatin, but not by itraconazole and caspofungin. Orthologues of rtaA were also induced by AmB exposure in A. lentulus and A. terreus. Deletion of rtaA did not significantly change the ergosterol content of A. fumigatus, but decreased fluorescence intensity of the sterol-binding stain filipin. This suggests that RtaA is involved in sterol and lipid trafficking, possibly by transporting the target ergosterol to or from lipid droplets. These findings reveal the contribution of RtaA to polyene resistance in A. fumigatus, and thus provide a new putative target for antifungal drug development.

多烯抗真菌两性霉素B (AmB)及其脂质体制剂AmBisome属于烟曲霉侵袭性曲霉病的治疗选择。曲霉菌临床分离株对AmB的耐药性日益增加,但AmB耐药的机制尚不清楚。在这项研究中,我们对暴露于亚致死浓度的AmB和AmBisome的烟曲霉进行了蛋白质组学分析。两种抗真菌药物均显著提高了参与芳香酸代谢、跨膜运输和次生代谢物生物合成的蛋白质水平。RtaA是上调最多的蛋白之一,它是rta样蛋白家族的一员,该家族包括保守的真菌膜蛋白,据推测具有转运蛋白或转位蛋白的功能。因此,我们发现RtaA主要存在于细胞质膜中,少量存在于液泡样结构中。rtaA的缺失导致多烯敏感性增加,其过表达导致适度的抗性。有趣的是,rtaA的表达仅被暴露于多烯AmB和制霉菌素诱导,而伊曲康唑和caspofungin则没有。AmB暴露在香菇和地菇中也能诱导rtaA同源物。rtaA的缺失对烟曲霉麦角甾醇含量没有显著影响,但甾醇结合染色filipin的荧光强度降低。这表明RtaA参与了固醇和脂质的运输,可能是通过将目标麦角甾醇运输到脂滴或从脂滴运输。这些发现揭示了RtaA在烟曲霉多烯耐药中的作用,从而为抗真菌药物的开发提供了新的推测靶点。
{"title":"The proteomic response of <i>Aspergillus fumigatus</i> to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.","authors":"Ammar Abou-Kandil, Sophie Tröger-Görler, Annica Pschibul, Thomas Krüger, Maira Rosin, Franziska Schmidt, Parastoo Akbarimoghaddam, Arjun Sarkar, Zoltán Cseresnyés, Yana Shadkchan, Thorsten Heinekamp, Markus H Gräler, Amelia E Barber, Grit Walther, Marc Thilo Figge, Axel A Brakhage, Nir Osherov, Olaf Kniemeyer","doi":"10.1093/femsml/uqae024","DOIUrl":"10.1093/femsml/uqae024","url":null,"abstract":"<p><p>The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by <i>Aspergillus fumigatus</i>. Increasing resistance to AmB in clinical isolates of <i>Aspergillus</i> species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of <i>A. fumigatus</i> exposed to sublethal concentrations of AmB and AmBisome. Both antifungals induced significantly increased levels of proteins involved in aromatic acid metabolism, transmembrane transport, and secondary metabolite biosynthesis. One of the most upregulated proteins was RtaA, a member of the RTA-like protein family, which includes conserved fungal membrane proteins with putative functions as transporters or translocases. Accordingly, we found that RtaA is mainly located in the cytoplasmic membrane and to a minor extent in vacuolar-like structures. Deletion of <i>rtaA</i> led to increased polyene sensitivity and its overexpression resulted in modest resistance. Interestingly, <i>rtaA</i> expression was only induced by exposure to the polyenes AmB and nystatin, but not by itraconazole and caspofungin. Orthologues of <i>rtaA</i> were also induced by AmB exposure in <i>A. lentulus</i> and <i>A. terreus</i>. Deletion of <i>rtaA</i> did not significantly change the ergosterol content of <i>A. fumigatus</i>, but decreased fluorescence intensity of the sterol-binding stain filipin. This suggests that RtaA is involved in sterol and lipid trafficking, possibly by transporting the target ergosterol to or from lipid droplets. These findings reveal the contribution of RtaA to polyene resistance in <i>A. fumigatus</i>, and thus provide a new putative target for antifungal drug development.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae024"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accessing microbial natural products of the past. 获取过去的微生物天然产物。
Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI: 10.1093/femsml/uqae023
Martin Klapper, Pierre Stallforth

Microbial natural products-low molecular weight compounds biosynthesized by microorganisms-form the foundation of important modern therapeutics, including antibiotics, immunomodulators, and anti-cancer agents. This perspective discusses and contrasts two emerging approaches for uncovering natural products of the past. On the one hand, ancestral sequence reconstruction allows recreating biosynthetic pathways that date back hundreds of millions of years. On the other hand, sequencing and de novo assembly of ancient DNA reveals the biosynthetic potential of ancient microbial communities up to 100 000 years. Together, these approaches unveil an otherwise hidden reservoir of functional and structural molecular diversity. They also offer new opportunities to study the biological function and evolution of these molecules within an archaeological context.

微生物天然产物——由微生物生物合成的低分子量化合物——构成了重要的现代治疗药物的基础,包括抗生素、免疫调节剂和抗癌药物。这一观点讨论并对比了两种新兴的揭示过去自然产物的方法。一方面,祖先序列重建允许重建可追溯到数亿年前的生物合成途径。另一方面,古代DNA的测序和重新组装揭示了10万年前古代微生物群落的生物合成潜力。总之,这些方法揭示了一个隐藏的功能和结构分子多样性宝库。它们也为在考古背景下研究这些分子的生物学功能和进化提供了新的机会。
{"title":"Accessing microbial natural products of the past.","authors":"Martin Klapper, Pierre Stallforth","doi":"10.1093/femsml/uqae023","DOIUrl":"10.1093/femsml/uqae023","url":null,"abstract":"<p><p>Microbial natural products-low molecular weight compounds biosynthesized by microorganisms-form the foundation of important modern therapeutics, including antibiotics, immunomodulators, and anti-cancer agents. This perspective discusses and contrasts two emerging approaches for uncovering natural products of the past. On the one hand, ancestral sequence reconstruction allows recreating biosynthetic pathways that date back hundreds of millions of years. On the other hand, sequencing and <i>de novo</i> assembly of ancient DNA reveals the biosynthetic potential of ancient microbial communities up to 100 000 years. Together, these approaches unveil an otherwise hidden reservoir of functional and structural molecular diversity. They also offer new opportunities to study the biological function and evolution of these molecules within an archaeological context.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae023"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen Aspergillus fumigatus. 追踪人类真菌病原体烟曲霉对标记宿主来源的细胞外囊泡的摄取。
Pub Date : 2024-11-06 eCollection Date: 2024-01-01 DOI: 10.1093/femsml/uqae022
Corissa Visser, Flora Rivieccio, Thomas Krüger, Franziska Schmidt, Zoltán Cseresnyés, Manfred Rohde, Marc Thilo Figge, Olaf Kniemeyer, Matthew G Blango, Axel A Brakhage

Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen Aspergillus fumigatus; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during in vitro A. fumigatus interaction. Fusion of EV marker proteins (CD63, CD9, and CD81) with a Nanoluciferase (NLuc) and a green fluorescent protein (GFP) facilitated their relative quantification by luminescence and visualization by a fluorescence signal. The use of an NLuc fused with a GFP is advantageous as it allows for quantification and visualization of EVs simultaneously without additional external manipulation and to distinguish subpopulations of EVs. Using this system, visualization and tracking of EVs was possible using confocal laser scanning microscopy and advanced imaging analysis. These experiments revealed the propensity of host cell-derived EVs to associate with the fungal cell wall and ultimately colocalize with the cell membrane of A. fumigatus hyphae in large numbers. In conclusion, we have created a series of tools to better define the complex interplay of host-derived EVs with microbial pathogens.

在宿主-微生物相互作用过程中,细胞外囊泡(EVs)作为细胞间和界间通讯的促进者而受到关注。最近我们发现,在感染后,宿主多形核白细胞产生抗真菌ev,靶向临床重要的真菌病原体烟曲霉;然而,EVs对体外烟曲霉相互作用的影响较小。将EV标记蛋白(CD63、CD9和CD81)与纳米荧光酶(NLuc)和绿色荧光蛋白(GFP)融合,可以通过发光和荧光信号的可视化来相对量化它们。使用NLuc与GFP融合是有利的,因为它允许同时量化和可视化电动汽车,而无需额外的外部操作,并区分电动汽车的亚群。利用该系统,利用共聚焦激光扫描显微镜和先进的成像分析,可以可视化和跟踪ev。这些实验揭示了宿主细胞源性EVs倾向于与真菌细胞壁结合,并最终与烟曲霉菌丝的细胞膜大量共定位。总之,我们已经创建了一系列工具来更好地定义宿主衍生的ev与微生物病原体的复杂相互作用。
{"title":"Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen <i>Aspergillus fumigatus</i>.","authors":"Corissa Visser, Flora Rivieccio, Thomas Krüger, Franziska Schmidt, Zoltán Cseresnyés, Manfred Rohde, Marc Thilo Figge, Olaf Kniemeyer, Matthew G Blango, Axel A Brakhage","doi":"10.1093/femsml/uqae022","DOIUrl":"10.1093/femsml/uqae022","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen <i>Aspergillus fumigatus</i>; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during <i>in vitro A. fumigatus</i> interaction. Fusion of EV marker proteins (CD63, CD9, and CD81) with a Nanoluciferase (NLuc) and a green fluorescent protein (GFP) facilitated their relative quantification by luminescence and visualization by a fluorescence signal. The use of an NLuc fused with a GFP is advantageous as it allows for quantification and visualization of EVs simultaneously without additional external manipulation and to distinguish subpopulations of EVs. Using this system, visualization and tracking of EVs was possible using confocal laser scanning microscopy and advanced imaging analysis. These experiments revealed the propensity of host cell-derived EVs to associate with the fungal cell wall and ultimately colocalize with the cell membrane of <i>A. fumigatus</i> hyphae in large numbers. In conclusion, we have created a series of tools to better define the complex interplay of host-derived EVs with microbial pathogens.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae022"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. Pyoverdine 抗生素联合疗法:其疗效及其对大肠杆菌耐药性演变的影响。
Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI: 10.1093/femsml/uqae021
Vera Vollenweider, Flavie Roncoroni, Rolf Kümmerli

Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the bla TEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying bla TEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.

抗生素耐药性是全球健康日益关注的一个问题,需要创新和有效的策略来对付病原菌。由环境中的假单胞菌属产生的铁螯合苷元是一类新型的有前景的化合物,可通过铁饥饿诱导病原体生长停滞。虽然我们之前已经证明了吡咯并酰胺作为抗菌剂的功效,但我们对这些分子如何与抗生素相互作用并影响抗药性进化的认识仍然未知。在这里,我们研究了三种大肠杆菌菌株对吡咯并啶、头孢菌素类抗生素头孢唑肟和它们的复方制剂的耐药性进化倾向。我们使用了一株天真大肠杆菌野生型菌株和两株在染色体或昂贵的多拷贝质粒上携带 bla TEM-1 β-内酰胺酶基因的同源变异株,以探讨遗传背景对耐药性选择的影响。我们发现,在单一处理条件下,所有大肠杆菌变种都产生了对头孢他啶的强抗性和对吡呋丁的弱抗性。头孢他啶的耐药性与外膜孔蛋白基因(envZ 和 ompF)的突变有关,而吡咯烷酮的耐药性则与寡肽渗透酶(opp)操作子的突变有关。与此相反,头孢他啶耐药性表型在联合治疗中有所减弱,特别是在多拷贝质粒上携带 bla TEM-1 的大肠杆菌变体中。总之,我们的研究结果表明,头孢唑肟和吡蚜酮呈中性相互作用,吡蚜酮作为一种抗菌剂对携带质粒的大肠杆菌菌株特别有效,这可能是因为铁饥饿会影响细胞代谢和质粒复制。
{"title":"Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in <i>Escherichia coli</i>.","authors":"Vera Vollenweider, Flavie Roncoroni, Rolf Kümmerli","doi":"10.1093/femsml/uqae021","DOIUrl":"10.1093/femsml/uqae021","url":null,"abstract":"<p><p>Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental <i>Pseudomonas</i> spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three <i>Escherichia coli</i> strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive <i>E. coli</i> wildtype strain and two isogenic variants carrying the <i>bla</i> <sub>TEM-1</sub> β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all <i>E. coli</i> variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (<i>envZ</i> and <i>ompF</i>), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (<i>opp</i>) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the <i>E. coli</i> variant carrying <i>bla</i> <sub>TEM-1</sub> on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying <i>E. coli</i> strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae021"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
microLife
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1