OBJECT TRACKING WITH ROTATION-INVARIANT LARGEST DIFFERENCE INDEXED LOCAL TERNARY PATTERN

J. Shajeena, K. Ramar
{"title":"OBJECT TRACKING WITH ROTATION-INVARIANT LARGEST DIFFERENCE INDEXED LOCAL TERNARY PATTERN","authors":"J. Shajeena, K. Ramar","doi":"10.21917/IJIVP.2017.0204","DOIUrl":null,"url":null,"abstract":"This paper presents an ideal method for object tracking directly in the compressed domain in video sequences. An enhanced rotation-invariant image operator called Largest Difference Indexed Local Ternary Pattern (LDILTP) has been proposed. The Local Ternary Pattern which worked very well in texture classification and face recognition is now extended for rotation invariant object tracking. Histogramming the LTP code makes the descriptor resistant to translation. The histogram intersection is used to find the similarity measure. This method is robust to noise and retain contrast details. The proposed scheme has been verified on various datasets and shows a commendable performance.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"07 1","pages":"1408-1414"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2017.0204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an ideal method for object tracking directly in the compressed domain in video sequences. An enhanced rotation-invariant image operator called Largest Difference Indexed Local Ternary Pattern (LDILTP) has been proposed. The Local Ternary Pattern which worked very well in texture classification and face recognition is now extended for rotation invariant object tracking. Histogramming the LTP code makes the descriptor resistant to translation. The histogram intersection is used to find the similarity measure. This method is robust to noise and retain contrast details. The proposed scheme has been verified on various datasets and shows a commendable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转不变最大差分索引局部三元模式的目标跟踪
本文提出了一种理想的在视频序列的压缩域中直接跟踪目标的方法。提出了一种增强的旋转不变图像算子——最大差分索引局部三元模式算子(LDILTP)。局部三元模式在纹理分类和人脸识别中表现良好,现在将其扩展到旋转不变目标跟踪中。直方图化LTP代码使描述符无法翻译。直方图交叉点用于寻找相似度度量。该方法对噪声具有较强的鲁棒性,并保留了对比度细节。该方案已在多个数据集上进行了验证,并显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1