{"title":"Tribological evaluation of PAO 100 oil-based lithium greases with chemically functionalized nanoadditives","authors":"Homender Kumar, Harsha A. P., Sooraj Singh Rawat","doi":"10.1002/ls.1656","DOIUrl":null,"url":null,"abstract":"<p>The lubricating greases employed in this study were formulated with polyalphaolefin (PAO) 100 as the base oil and 12-lithium hydroxystearate as the thickener. The sol–gel method was used to produce the LaF<sub>3</sub> nanoadditives. The oleic acid-treated LaF<sub>3</sub> (i.e., OA-LaF<sub>3</sub>) and carboxylic acid-treated MWCNTs (i.e., COOH-MWCNTs) were blended in the formulated grease samples and used as nanoadditives. The detailed microstructural and chemical properties of chemically treated nanoadditives were investigated using HR-TEM, XRD, FTIR and XPS analyses. Using a four-ball tester, the effect of different concentrations of nanoadditives on the tribo-performance of greases was investigated. Tribo-test results revealed the role of nanoadditives in PAO-based grease lubrication performance. COOH-MWCNTs and OA-LaF<sub>3</sub> nanoadditives outperformed PAO grease in terms of physicochemical and tribo-performance for steel-steel tribo-pair. The improved tribo-performance is attributed to the formation of tribo-film on the contact interfaces via nanoadditives. The development of tribo-film was confirmed by XPS analysis of worn surfaces.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 7","pages":"528-548"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1656","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The lubricating greases employed in this study were formulated with polyalphaolefin (PAO) 100 as the base oil and 12-lithium hydroxystearate as the thickener. The sol–gel method was used to produce the LaF3 nanoadditives. The oleic acid-treated LaF3 (i.e., OA-LaF3) and carboxylic acid-treated MWCNTs (i.e., COOH-MWCNTs) were blended in the formulated grease samples and used as nanoadditives. The detailed microstructural and chemical properties of chemically treated nanoadditives were investigated using HR-TEM, XRD, FTIR and XPS analyses. Using a four-ball tester, the effect of different concentrations of nanoadditives on the tribo-performance of greases was investigated. Tribo-test results revealed the role of nanoadditives in PAO-based grease lubrication performance. COOH-MWCNTs and OA-LaF3 nanoadditives outperformed PAO grease in terms of physicochemical and tribo-performance for steel-steel tribo-pair. The improved tribo-performance is attributed to the formation of tribo-film on the contact interfaces via nanoadditives. The development of tribo-film was confirmed by XPS analysis of worn surfaces.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.