Salvatore Scudero, Antonino D’Alessandro, Anna Figlioli
{"title":"Evaluation of the earthquake monitoring network in Taiwan","authors":"Salvatore Scudero, Antonino D’Alessandro, Anna Figlioli","doi":"10.1007/s10950-023-10162-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we perform an evaluation of the coverage of the earthquake monitoring network of Taiwan. The capability of a general network is a function of an adequate number of optimally distributed nodes. For this case study, the evaluation is performed with a statistical approach which includes descriptive spatial statistics in combination with point pattern techniques. The spatial distribution of the nodes of the earthquake monitoring network is analyzed in comparison with the distribution of seismicity, completeness magnitude, active seismogenic sources, seismic hazard, and population distribution. All these data can be put in relationship with the objectives of an earthquake monitoring network; therefore, they can be used, in turn, to retrieve information about the consistency of the network itself. In particular, we investigate the “Real-time Seismic Monitoring Network” and the “Strong-Motion Earthquake Observation Network,” each one characterized by its own objectives, and therefore respectively compared with external information related to their purposes such as seismicity, seismogenic sources, seismic hazard, and population distribution. This simple and reliable approach reveals the high quality of the networks established in Taiwan. In general, it is able to provide quantitative information on the coverage of any type of network, identifying possible critical areas and addressing their future development.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"27 4","pages":"643 - 657"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-023-10162-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10162-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we perform an evaluation of the coverage of the earthquake monitoring network of Taiwan. The capability of a general network is a function of an adequate number of optimally distributed nodes. For this case study, the evaluation is performed with a statistical approach which includes descriptive spatial statistics in combination with point pattern techniques. The spatial distribution of the nodes of the earthquake monitoring network is analyzed in comparison with the distribution of seismicity, completeness magnitude, active seismogenic sources, seismic hazard, and population distribution. All these data can be put in relationship with the objectives of an earthquake monitoring network; therefore, they can be used, in turn, to retrieve information about the consistency of the network itself. In particular, we investigate the “Real-time Seismic Monitoring Network” and the “Strong-Motion Earthquake Observation Network,” each one characterized by its own objectives, and therefore respectively compared with external information related to their purposes such as seismicity, seismogenic sources, seismic hazard, and population distribution. This simple and reliable approach reveals the high quality of the networks established in Taiwan. In general, it is able to provide quantitative information on the coverage of any type of network, identifying possible critical areas and addressing their future development.
期刊介绍:
Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence.
Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.